BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 3010045)

  • 41. [Cloning and expression of Pseudomonas putida gene controlling the catechol-2,3-oxygenase activity in Escherichia coli cells].
    Tsoĭ TV; Kosheleva IA; Zamaraev VS; Trelina OV; Selifonov SA
    Genetika; 1988 Sep; 24(9):1550-61. PubMed ID: 3058550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Localization and functional analysis of transposon mutations in regulatory genes of the TOL catabolic pathway.
    Franklin FC; Lehrbach PR; Lurz R; Rueckert B; Bagdasarian M; Timmis KN
    J Bacteriol; 1983 May; 154(2):676-85. PubMed ID: 6188746
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes.
    de Lorenzo V; Eltis L; Kessler B; Timmis KN
    Gene; 1993 Jan; 123(1):17-24. PubMed ID: 8380783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stability of TOL plasmid pWW0 in Pseudomonas putida mt-2 under non-selective conditions in continuous culture.
    Duetz WA; van Andel JG
    J Gen Microbiol; 1991 Jun; 137(6):1369-74. PubMed ID: 1919511
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of the degradative pathway enzymes coded for by the TOL plasmid (pWWO) from Pseudomonas putida mt-2.
    Worsey MJ; Franklin FC; Williams PA
    J Bacteriol; 1978 Jun; 134(3):757-64. PubMed ID: 659369
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Excision and integration of degradative pathway genes from TOL plasmid pWW0.
    Jeenes DJ; Williams PA
    J Bacteriol; 1982 Apr; 150(1):188-94. PubMed ID: 7061392
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deepening TOL and TOU catabolic pathways of Pseudomonas sp. OX1: cloning, sequencing and characterization of the lower pathways.
    Bertini L; Cafaro V; Proietti S; Caporale C; Capasso P; Caruso C; Di Donato A
    Biochimie; 2013 Feb; 95(2):241-50. PubMed ID: 23009925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cloning and expression of the plasmid-encoded benzene dioxygenase genes from Pseudomonas putida ML2.
    Tan HM; Mason JR
    FEMS Microbiol Lett; 1990 Nov; 60(3):259-64. PubMed ID: 2083838
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physical and functional mapping of RP4-TOL plasmid recombinants: analysis of insertion and deletion mutants.
    Nakazawa T; Inouye S; Nakazawa A
    J Bacteriol; 1980 Oct; 144(1):222-31. PubMed ID: 6252192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Loss of Tdn catabolic genes by deletion from and curing of plasmid pTDN1 in Pseudomonas putida: rate and mode of loss are substrate and pH dependent.
    Saint CP; Venables WA
    J Gen Microbiol; 1990 Apr; 136(4):627-36. PubMed ID: 2168928
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase.
    Jeong JJ; Kim JH; Kim CK; Hwang I; Lee K
    Microbiology (Reading); 2003 Nov; 149(Pt 11):3265-3277. PubMed ID: 14600239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleotide sequence of the regulatory gene xylS on the Pseudomonas putida TOL plasmid and identification of the protein product.
    Inouye S; Nakazawa A; Nakazawa T
    Gene; 1986; 44(2-3):235-42. PubMed ID: 3023186
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of a spontaneously occurring mutant of the TOL20 plasmid in Pseudomonas putida MT20: possible regulatory implications.
    Worsey MJ; Williams PA
    J Bacteriol; 1977 Jun; 130(3):1149-58. PubMed ID: 863853
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates.
    Francisco P; Ogawa N; Suzuki K; Miyashita K
    Microbiology (Reading); 2001 Jan; 147(Pt 1):121-33. PubMed ID: 11160806
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physically associated enzymes produce and metabolize 2-hydroxy-2,4-dienoate, a chemically unstable intermediate formed in catechol metabolism via meta cleavage in Pseudomonas putida.
    Harayama S; Rekik M; Ngai KL; Ornston LN
    J Bacteriol; 1989 Nov; 171(11):6251-8. PubMed ID: 2681159
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Roles of the divergent branches of the meta-cleavage pathway in the degradation of benzoate and substituted benzoates.
    Harayama S; Mermod N; Rekik M; Lehrbach PR; Timmis KN
    J Bacteriol; 1987 Feb; 169(2):558-64. PubMed ID: 3542963
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway.
    Abril MA; Michan C; Timmis KN; Ramos JL
    J Bacteriol; 1989 Dec; 171(12):6782-90. PubMed ID: 2687253
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular analysis of a plasmid-encoded phenol hydroxylase from Pseudomonas CF600.
    Shingler V; Franklin FC; Tsuda M; Holroyd D; Bagdasarian M
    J Gen Microbiol; 1989 May; 135(5):1083-92. PubMed ID: 2559941
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Complete nucleotide sequence of the metapyrocatechase gene on the TOI plasmid of Pseudomonas putida mt-2.
    Nakai C; Kagamiyama H; Nozaki M; Nakazawa T; Inouye S; Ebina Y; Nakazawa A
    J Biol Chem; 1983 Mar; 258(5):2923-8. PubMed ID: 6826546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates.
    Ramos JL; Wasserfallen A; Rose K; Timmis KN
    Science; 1987 Jan; 235(4788):593-6. PubMed ID: 3468623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.