BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3010079)

  • 1. Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs.
    Harrison SA; Reifsnyder DH; Gallis B; Cadd GG; Beavo JA
    Mol Pharmacol; 1986 May; 29(5):506-14. PubMed ID: 3010079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphodiesterase-III Inhibitors Amrinone and Milrinone on Epilepsy and Cardiovascular Activities.
    Asif M
    N Am J Med Sci; 2012 Oct; 4(10):499-502. PubMed ID: 23112975
    [No Abstract]   [Full Text] [Related]  

  • 3. The Complexity and Multiplicity of the Specific cAMP Phosphodiesterase Family: PDE4, Open New Adapted Therapeutic Approaches.
    Lugnier C
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cUMP hydrolysis by PDE3B.
    Ostermeyer J; Golly F; Kaever V; Dove S; Seifert R; Schneider EH
    Naunyn Schmiedebergs Arch Pharmacol; 2018 Sep; 391(9):891-905. PubMed ID: 29808231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical Modelling of Nitric Oxide/Cyclic GMP/Cyclic AMP Signalling in Platelets.
    Kleppe R; Jonassen I; Døskeland SO; Selheim F
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29462984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of cardiac excitation-contraction coupling by cAMP phosphodiesterase subtypes.
    Mika D; Bobin P; Pomérance M; Lechêne P; Westenbroek RE; Catterall WA; Vandecasteele G; Leroy J; Fischmeister R
    Cardiovasc Res; 2013 Nov; 100(2):336-46. PubMed ID: 23933582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hesperidin-3'-o-methylether is more potent than hesperidin in phosphodiesterase inhibition and suppression of ovalbumin-induced airway hyperresponsiveness.
    Yang YL; Hsu HT; Wang KH; Wang CS; Chen CM; Ko WC
    Evid Based Complement Alternat Med; 2012; 2012():908562. PubMed ID: 23082087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergence of major physiological stimuli for renin release on the Gs-alpha/cyclic adenosine monophosphate signaling pathway.
    Kim SM; Briggs JP; Schnermann J
    Clin Exp Nephrol; 2012 Feb; 16(1):17-24. PubMed ID: 22124804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hesperetin-7,3'-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio.
    Yang YL; Hsu HT; Wang KH; Han CY; Chen CM; Chen CM; Ko WC
    J Biomed Sci; 2011 Nov; 18(1):84. PubMed ID: 22074248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic AMP control measured in two compartments in HEK293 cells: phosphodiesterase K(M) is more important than phosphodiesterase localization.
    Matthiesen K; Nielsen J
    PLoS One; 2011; 6(9):e24392. PubMed ID: 21931705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-Petasin, the Main Sesquiterpene of Petasites formosanus, Inhibits Phosphodiesterase Activity and Suppresses Ovalbumin-Induced Airway Hyperresponsiveness.
    Shih CH; Huang TJ; Chen CM; Lin YL; Ko WC
    Evid Based Complement Alternat Med; 2011; 2011():132374. PubMed ID: 19641087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of renovascular adenosine 3',5'-cyclic monophosphate in spontaneously hypertensive rats.
    Jackson EK; Mi Z
    Hypertension; 2009 Aug; 54(2):270-7. PubMed ID: 19528365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effects of quercetin derivatives on phosphodiesterase isozymes and high-affinity [(3) H]-rolipram binding in guinea pig tissues.
    Chan AL; Huang HL; Chien HC; Chen CM; Lin CN; Ko WC
    Invest New Drugs; 2008 Oct; 26(5):417-24. PubMed ID: 18264679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation: pathophysiological aspects.
    Osadchii OE
    Heart Fail Rev; 2007 Mar; 12(1):66-86. PubMed ID: 17387610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart.
    Yan C; Miller CL; Abe J
    Circ Res; 2007 Mar; 100(4):489-501. PubMed ID: 17332439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile responses to selective phosphodiesterase inhibitors following chronic beta-adrenoreceptor activation.
    Osadchii OE; Woodiwiss AJ; Norton GR
    Pflugers Arch; 2006 May; 452(2):155-63. PubMed ID: 16369769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic nucleotide phosphodiesterases in pancreatic islets.
    Pyne NJ; Furman BL
    Diabetologia; 2003 Sep; 46(9):1179-89. PubMed ID: 12904862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial enterotoxins are associated with resistance to colon cancer.
    Pitari GM; Zingman LV; Hodgson DM; Alekseev AE; Kazerounian S; Bienengraeber M; Hajnóczky G; Terzic A; Waldman SA
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2695-9. PubMed ID: 12594332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiation of slow component of delayed rectifier K(+) current by cGMP via two distinct mechanisms: inhibition of phosphodiesterase 3 and activation of protein kinase G.
    Shimizu K; Shintani Y; Ding WG; Matsuura H; Bamba T
    Br J Pharmacol; 2002 Sep; 137(1):127-37. PubMed ID: 12183338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide-cGMP pathway facilitates acetylcholine release and bradycardia during vagal nerve stimulation in the guinea-pig in vitro.
    Herring N; Paterson DJ
    J Physiol; 2001 Sep; 535(Pt 2):507-18. PubMed ID: 11533140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.