These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 30100812)

  • 1. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration.
    Marrella A; Lee TY; Lee DH; Karuthedom S; Syla D; Chawla A; Khademhosseini A; Jang HL
    Mater Today (Kidlington); 2018 May; 21(4):362-376. PubMed ID: 30100812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing of biomaterials for vascularized and innervated tissue regeneration.
    Zhang H; Wu C
    Int J Bioprint; 2023; 9(3):706. PubMed ID: 37273994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogel-Based Systems in Neuro-Vascularized Bone Regeneration: A Promising Therapeutic Strategy.
    Li X; Cui Y; He X; Mao L
    Macromol Biosci; 2024 May; 24(5):e2300484. PubMed ID: 38241425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyhedron-Like Biomaterials for Innervated and Vascularized Bone Regeneration.
    Zhang H; Zhang M; Zhai D; Qin C; Wang Y; Ma J; Zhuang H; Shi Z; Wang L; Wu C
    Adv Mater; 2023 Oct; 35(42):e2302716. PubMed ID: 37434296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nerves within bone and their application in tissue engineering of bone regeneration.
    Liu S; Liu S; Li S; Liang B; Han X; Liang Y; Wei X
    Front Neurol; 2022; 13():1085560. PubMed ID: 36818724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalized hydrogel-microsphere composites stimulating neurite outgrowth for vascularized bone regeneration.
    Li Q; Zhang H; Zeng Z; Yan S; Hei Y; Zhang Y; Chen Y; Zhang S; Zhou W; Wei S; Sun Y
    Biomater Sci; 2023 Jul; 11(15):5274-5286. PubMed ID: 37345831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Laden Scaffolds for Vascular-Innervated Bone Regeneration.
    Qin C; Zhang H; Chen L; Zhang M; Ma J; Zhuang H; Huan Z; Xiao Y; Wu C
    Adv Healthc Mater; 2023 May; 12(13):e2201923. PubMed ID: 36748277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation.
    Dos Santos BP; Garbay B; Fenelon M; Rosselin M; Garanger E; Lecommandoux S; Oliveira H; Amédée J
    Acta Biomater; 2019 Nov; 99():154-167. PubMed ID: 31425892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges.
    Sun W; Ye B; Chen S; Zeng L; Lu H; Wan Y; Gao Q; Chen K; Qu Y; Wu B; Lv X; Guo X
    Bone Res; 2023 Dec; 11(1):65. PubMed ID: 38123549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Pre-vascularized Scaffolds for Bone Regeneration.
    Barabaschi GD; Manoharan V; Li Q; Bertassoni LE
    Adv Exp Med Biol; 2015; 881():79-94. PubMed ID: 26545745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three dimensional printed nanostructure biomaterials for bone tissue engineering.
    Marew T; Birhanu G
    Regen Ther; 2021 Dec; 18():102-111. PubMed ID: 34141834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered Biomaterials for Tissue Regeneration of Innervated and Vascularized Tissues: Lessons Learned from the Brain.
    Nih LR
    J Endod; 2020 Sep; 46(9S):S101-S104. PubMed ID: 32950181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications.
    Liu Z; Wan X; Wang ZL; Li L
    Adv Mater; 2021 Aug; 33(32):e2007429. PubMed ID: 34117803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration.
    Zhang W; Wang N; Yang M; Sun T; Zhang J; Zhao Y; Huo N; Li Z
    J Orthop Translat; 2022 Mar; 33():41-54. PubMed ID: 35228996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen tissue engineering: development of novel biomaterials and applications.
    Cen L; Liu W; Cui L; Zhang W; Cao Y
    Pediatr Res; 2008 May; 63(5):492-6. PubMed ID: 18427293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Scaffold Design and Material for Vascularized Tissue-Engineered Bone Regeneration.
    Yin S; Zhang W; Zhang Z; Jiang X
    Adv Healthc Mater; 2019 May; 8(10):e1801433. PubMed ID: 30938094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling Osteogenesis and Vasculogenesis in Engineered Orthopedic Tissues.
    Schott NG; Friend NE; Stegemann JP
    Tissue Eng Part B Rev; 2021 Jun; 27(3):199-214. PubMed ID: 32854589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunomodulation Effect of Biomaterials on Bone Formation.
    Zhao T; Chu Z; Ma J; Ouyang L
    J Funct Biomater; 2022 Jul; 13(3):. PubMed ID: 35893471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.