These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30100871)

  • 1. Design and Evaluation of Passive Shoulder Joint Tracking Module for Upper-Limb Rehabilitation Robots.
    Lee KS; Park JH; Beom J; Park HS
    Front Neurorobot; 2018; 12():38. PubMed ID: 30100871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Analysis and Motion Capture System Utilization Method for Standardization Evaluation of Tracking Objectivity of 6-DOF Arm Structure for Rehabilitation Training Exercise Therapy Robot.
    Seol J; Yoon K; Kim KG
    Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear).
    Chen J; Lum PS
    J Neuroeng Rehabil; 2018 Mar; 15(1):13. PubMed ID: 29499712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a 6-DoF Cost-effective Differential-drive based Robotic system for Upper-Limb Stroke Rehabilitation.
    Jonna P; Rao M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1423-1427. PubMed ID: 36085923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reference path generation for upper-arm exoskeletons considering scapulohumeral rhythms.
    Soltani-Zarrin R; Zeiaee A; Langari R; Robson N
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():753-758. PubMed ID: 28813910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of suitability of a micro-processing unit of motion analysis for upper limb tracking.
    Barraza Madrigal JA; Cardiel E; Rogeli P; Leija Salas L; Muñoz Guerrero R
    Med Eng Phys; 2016 Aug; 38(8):793-800. PubMed ID: 27185034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glenohumeral joint trajectory tracking for improving the shoulder compliance of the upper limb rehabilitation robot.
    Tang Y; Hao D; Cao C; Shi P; Yu H; Luan X; Fang F
    Med Eng Phys; 2023 Mar; 113():103961. PubMed ID: 36966005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
    Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W
    Front Neurorobot; 2019; 13():99. PubMed ID: 31849635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of articular malposition after total shoulder arthroplasty on glenohumeral translations, range of motion, and subacromial impingement.
    Williams GR; Wong KL; Pepe MD; Tan V; Silverberg D; Ramsey ML; Karduna A; Iannotti JP
    J Shoulder Elbow Surg; 2001; 10(5):399-409. PubMed ID: 11641695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Shoulder Mechanism for Assisting Upper Arm Function with Distally Located Actuators.
    Jones M; Bouffard C; Hejrati B
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6233-6236. PubMed ID: 31947267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots.
    Passon A; Schauer T; Seel T
    Front Robot AI; 2020; 7():554639. PubMed ID: 33501318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cable-based parallel manipulator for rehabilitation of shoulder and elbow movements.
    Nunes WM; Rodrigues LA; Oliveira LP; Ribeiro JF; Carvalho JC; Gonçalves RS
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975503. PubMed ID: 22275699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HERCULES: A Three Degree-of-Freedom Pneumatic Upper Limb Exoskeleton for Stroke Rehabilitation
    Burns M; Zavoda Z; Nataraj R; Pochiraju K; Vinjamuri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4959-4962. PubMed ID: 33019100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of thoracic posture on scapulothoracic and glenohumeral motions during eccentric shoulder external rotation.
    Suzuki Y; Muraki T; Sekiguchi Y; Ishikawa H; Yaguchi H; Suzuki Y; Morise S; Honda K; Izumi SI
    Gait Posture; 2019 Jan; 67():207-212. PubMed ID: 30368207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shoulder Bone Geometry Affects the Active and Passive Axial Rotational Range of the Glenohumeral Joint.
    Humphries A; Cirovic S; Shaheen AF
    Am J Sports Med; 2017 Nov; 45(13):3010-3019. PubMed ID: 28777666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.