These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30101036)

  • 1. Conformational Sampling of the Intrinsically Disordered C-Terminal Tail of DERA Is Important for Enzyme Catalysis.
    Schulte M; Petrović D; Neudecker P; Hartmann R; Pietruszka J; Willbold S; Willbold D; Panwalkar V
    ACS Catal; 2018 May; 8(5):3971-3984. PubMed ID: 30101036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight for substrate tolerance to 2-deoxyribose-5-phosphate aldolase from the pathogen Streptococcus suis.
    Cao TP; Kim JS; Woo MH; Choi JM; Jun Y; Lee KH; Lee SH
    J Microbiol; 2016 Apr; 54(4):311-21. PubMed ID: 27033207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational engineering of 2-deoxyribose-5-phosphate aldolases for the biosynthesis of (
    Kim T; Stogios PJ; Khusnutdinova AN; Nemr K; Skarina T; Flick R; Joo JC; Mahadevan R; Savchenko A; Yakunin AF
    J Biol Chem; 2020 Jan; 295(2):597-609. PubMed ID: 31806708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current state of and need for enzyme engineering of 2-deoxy-D-ribose 5-phosphate aldolases and its impact.
    Rouvinen J; Andberg M; Pääkkönen J; Hakulinen N; Koivula A
    Appl Microbiol Biotechnol; 2021 Aug; 105(16-17):6215-6228. PubMed ID: 34410440
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Schulte M; Stoldt M; Neudecker P; Pietruszka J; Willbold D; Panwalkar V
    Biomol NMR Assign; 2017 Oct; 11(2):197-201. PubMed ID: 28560616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking coupled motions and entropic effects to the catalytic activity of 2-deoxyribose-5-phosphate aldolase (DERA).
    Ma H; Szeler K; Kamerlin SCL; Widersten M
    Chem Sci; 2016 Feb; 7(2):1415-1421. PubMed ID: 29910900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99A resolution.
    Heine A; Luz JG; Wong CH; Wilson IA
    J Mol Biol; 2004 Oct; 343(4):1019-34. PubMed ID: 15476818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based mutagenesis approaches toward expanding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase.
    DeSantis G; Liu J; Clark DP; Heine A; Wilson IA; Wong CH
    Bioorg Med Chem; 2003 Jan; 11(1):43-52. PubMed ID: 12467706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DERA is the human deoxyribose phosphate aldolase and is involved in stress response.
    Salleron L; Magistrelli G; Mary C; Fischer N; Bairoch A; Lane L
    Biochim Biophys Acta; 2014 Dec; 1843(12):2913-25. PubMed ID: 25229427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and application of a newly synthesized 2-deoxyribose-5-phosphate aldolase.
    You ZY; Liu ZQ; Zheng YG; Shen YC
    J Ind Microbiol Biotechnol; 2013 Jan; 40(1):29-39. PubMed ID: 23179467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA): applications and modifications.
    Haridas M; Abdelraheem EMM; Hanefeld U
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):9959-9971. PubMed ID: 30284013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli.
    Zgiby S; Plater AR; Bates MA; Thomson GJ; Berry A
    J Mol Biol; 2002 Jan; 315(2):131-40. PubMed ID: 11779234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational characterization of the intrinsically disordered protein Chibby: Interplay between structural elements in target recognition.
    Killoran RC; Sowole MA; Halim MA; Konermann L; Choy WY
    Protein Sci; 2016 Aug; 25(8):1420-9. PubMed ID: 27082063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid-mediated aldolase immobilisation for enhanced catalysis and thermostability.
    Wang A; Gao W; Zhang F; Chen F; Du F; Yin X
    Bioprocess Biosyst Eng; 2012 Jun; 35(5):857-63. PubMed ID: 22318456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, expression, and characterization of a new deoxyribose 5-phosphate aldolase from Yersinia sp. EA015.
    Kim YM; Chang YH; Choi NS; Kim Y; Song JJ; Kim JS
    Protein Expr Purif; 2009 Dec; 68(2):196-200. PubMed ID: 19505577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase.
    Ohshida T; Hayashi J; Satomura T; Kawakami R; Ohshima T; Sakuraba H
    Protein Expr Purif; 2016 Oct; 126():62-68. PubMed ID: 27215670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism-based inhibition of an aldolase at high concentrations of its natural substrate acetaldehyde: structural insights and protective strategies.
    Dick M; Hartmann R; Weiergräber OH; Bisterfeld C; Classen T; Schwarten M; Neudecker P; Willbold D; Pietruszka J
    Chem Sci; 2016 Jul; 7(7):4492-4502. PubMed ID: 30155096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.