These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30101422)

  • 41. Sensation and Perception of a Bioinspired Flexible Smart Sensor System.
    Zeng X; Hu Y
    ACS Nano; 2021 Jun; 15(6):9238-9243. PubMed ID: 34124901
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Flexible Artificial Sensory Nerve Enabled by Nanoparticle-Assembled Synaptic Devices for Neuromorphic Tactile Recognition.
    Jiang C; Liu J; Yang L; Gong J; Wei H; Xu W
    Adv Sci (Weinh); 2022 Aug; 9(24):e2106124. PubMed ID: 35686320
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-Powered Pressure- and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin.
    Chun S; Son W; Kim H; Lim SK; Pang C; Choi C
    Nano Lett; 2019 May; 19(5):3305-3312. PubMed ID: 31021638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-Healing Soft Sensors: From Material Design to Implementation.
    Khatib M; Zohar O; Haick H
    Adv Mater; 2021 Mar; 33(11):e2004190. PubMed ID: 33533124
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress.
    Hammock ML; Chortos A; Tee BC; Tok JB; Bao Z
    Adv Mater; 2013 Nov; 25(42):5997-6038. PubMed ID: 24151185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent progress in self-powered multifunctional e-skin for advanced applications.
    Chen Y; Gao Z; Zhang F; Wen Z; Sun X
    Exploration (Beijing); 2022 Feb; 2(1):20210112. PubMed ID: 37324580
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Organic Optoelectronic Diodes as Tactile Sensors for Soft-Touch Applications.
    Kielar M; Hamid T; Wu L; Windels F; Sah P; Pandey AK
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21775-21783. PubMed ID: 31132249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer.
    Li T; Luo H; Qin L; Wang X; Xiong Z; Ding H; Gu Y; Liu Z; Zhang T
    Small; 2016 Sep; 12(36):5042-5048. PubMed ID: 27323288
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Porous-Structure-Promoted Tribo-Induced High-Performance Self-Powered Tactile Sensor toward Remote Human-Machine Interaction.
    Su L; Xiong Q; Wang H; Zi Y
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203510. PubMed ID: 36073821
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioinspired Hairy Skin Electronics for Detecting the Direction and Incident Angle of Airflow.
    Chun S; Son W; Choi C; Min H; Kim J; Lee HJ; Kim D; Kim C; Koh JS; Pang C
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13608-13615. PubMed ID: 30868878
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Harnessing tactile waves to measure skin-to-skin interactions.
    Kirsch LP; Job XE; Auvray M; Hayward V
    Behav Res Methods; 2021 Aug; 53(4):1469-1477. PubMed ID: 33205350
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A neuro-inspired artificial peripheral nervous system for scalable electronic skins.
    Lee WW; Tan YJ; Yao H; Li S; See HH; Hon M; Ng KA; Xiong B; Ho JS; Tee BCK
    Sci Robot; 2019 Jul; 4(32):. PubMed ID: 33137772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. All MoS
    Park YJ; Sharma BK; Shinde SM; Kim MS; Jang B; Kim JH; Ahn JH
    ACS Nano; 2019 Mar; 13(3):3023-3030. PubMed ID: 30768896
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Artificial Sensory Neuron with Tactile Perceptual Learning.
    Wan C; Chen G; Fu Y; Wang M; Matsuhisa N; Pan S; Pan L; Yang H; Wan Q; Zhu L; Chen X
    Adv Mater; 2018 Jul; 30(30):e1801291. PubMed ID: 29882255
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer.
    Liu Y; Zheng H; Zhao L; Liu S; Yao K; Li D; Yiu C; Gao S; Avila R; Pakpong C; Chang L; Wang Z; Huang X; Xie Z; Yang Z; Yu X
    Research (Wash D C); 2020; 2020():1085417. PubMed ID: 33134931
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artificial skin through super-sensing method and electrical impedance data from conductive fabric with aid of deep learning.
    Duan X; Taurand S; Soleimani M
    Sci Rep; 2019 Jun; 9(1):8831. PubMed ID: 31222040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tactile Near-Sensor Analogue Computing for Ultrafast Responsive Artificial Skin.
    Wang M; Tu J; Huang Z; Wang T; Liu Z; Zhang F; Li W; He K; Pan L; Zhang X; Feng X; Liu Q; Liu M; Chen X
    Adv Mater; 2022 Aug; 34(34):e2201962. PubMed ID: 35816720
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrasensitive Thin-Film Pressure Sensors with a Broad Dynamic Response Range and Excellent Versatility Toward Pressure, Vibration, Bending, and Temperature.
    Tian K; Sui G; Yang P; Deng H; Fu Q
    ACS Appl Mater Interfaces; 2020 May; 12(18):20998-21008. PubMed ID: 32293861
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soft Self-Healing Fluidic Tactile Sensors with Damage Detection and Localization Abilities.
    George Thuruthel T; Bosman AW; Hughes J; Iida F
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing.
    Dong K; Wu Z; Deng J; Wang AC; Zou H; Chen C; Hu D; Gu B; Sun B; Wang ZL
    Adv Mater; 2018 Oct; 30(43):e1804944. PubMed ID: 30256476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.