These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30101442)

  • 1. Pheno-Deep Counter: a unified and versatile deep learning architecture for leaf counting.
    Giuffrida MV; Doerner P; Tsaftaris SA
    Plant J; 2018 Nov; 96(4):880-890. PubMed ID: 30101442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotiki: an open software and hardware platform for affordable and easy image-based phenotyping of rosette-shaped plants.
    Minervini M; Giuffrida MV; Perata P; Tsaftaris SA
    Plant J; 2017 Apr; 90(1):204-216. PubMed ID: 28066963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of feature point detectors for multimodal image registration in plant phenotyping.
    Henke M; Junker A; Neumann K; Altmann T; Gladilin E
    PLoS One; 2019; 14(9):e0221203. PubMed ID: 31568494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Segmentation-Guided Deep Learning Framework for Leaf Counting.
    Fan X; Zhou R; Tjahjadi T; Das Choudhury S; Ye Q
    Front Plant Sci; 2022; 13():844522. PubMed ID: 35665165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf Count Aided Novel Framework for Rice (
    Vishal MK; Saluja R; Aggrawal D; Banerjee B; Raju D; Kumar S; Chinnusamy V; Sahoo RN; Adinarayana J
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doing More With Less: A Multitask Deep Learning Approach in Plant Phenotyping.
    Dobrescu A; Giuffrida MV; Tsaftaris SA
    Front Plant Sci; 2020; 11():141. PubMed ID: 32256503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning for Image Analysis: Leaf Disease Segmentation.
    F Danilevicz M; Bayer PE
    Methods Mol Biol; 2022; 2443():429-449. PubMed ID: 35037219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning for Plant Species Classification Using Leaf Vein Morphometric.
    Tan JW; Chang SW; Abdul-Kareem S; Yap HJ; Yong KT
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):82-90. PubMed ID: 29994129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated and accurate segmentation of leaf venation networks via deep learning.
    Xu H; Blonder B; Jodra M; Malhi Y; Fricker M
    New Phytol; 2021 Jan; 229(1):631-648. PubMed ID: 32964424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of plant models in deep learning: an application to leaf counting in rosette plants.
    Ubbens J; Cieslak M; Prusinkiewicz P; Stavness I
    Plant Methods; 2018; 14():6. PubMed ID: 29375647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A photometric stereo-based 3D imaging system using computer vision and deep learning for tracking plant growth.
    Bernotas G; Scorza LCT; Hansen MF; Hales IJ; Halliday KJ; Smith LN; Smith ML; McCormick AJ
    Gigascience; 2019 May; 8(5):. PubMed ID: 31127811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Plant Leaf Counting Using Deep Object Detection Networks.
    Buzzy M; Thesma V; Davoodi M; Mohammadpour Velni J
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33287100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Extraction of Phenotypic Leaf Traits of Individual Intact Herbarium Leaves from Herbarium Specimen Images Using Deep Learning Based Semantic Segmentation.
    Hussein BR; Malik OA; Ong WH; Slik JWF
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-feature data repository development and analytics for image cosegmentation in high-throughput plant phenotyping.
    QuiƱones R; Munoz-Arriola F; Choudhury SD; Samal A
    PLoS One; 2021; 16(9):e0257001. PubMed ID: 34473794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning in Image-Based Plant Phenotyping.
    Murphy KM; Ludwig E; Gutierrez J; Gehan MA
    Annu Rev Plant Biol; 2024 Jul; 75(1):771-795. PubMed ID: 38382904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Identification of Northern Leaf Blight-Infected Maize Plants from Field Imagery Using Deep Learning.
    DeChant C; Wiesner-Hanks T; Chen S; Stewart EL; Yosinski J; Gore MA; Nelson RJ; Lipson H
    Phytopathology; 2017 Nov; 107(11):1426-1432. PubMed ID: 28653579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maize-IAS: a maize image analysis software using deep learning for high-throughput plant phenotyping.
    Zhou S; Chai X; Yang Z; Wang H; Yang C; Sun T
    Plant Methods; 2021 Apr; 17(1):48. PubMed ID: 33926480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.