These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 30101530)

  • 1. Doping: A Key Enabler for Organic Transistors.
    Xu Y; Sun H; Liu A; Zhu HH; Li W; Lin YF; Noh YY
    Adv Mater; 2018 Nov; 30(46):e1801830. PubMed ID: 30101530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Electron Transport with Reduced Contact Resistance in N-Doped Polymer Field-Effect Transistors with a Dimeric Dopant.
    Wang R; Guo Y; Zhang D; Zhou H; Zhao D; Zhang Y
    Macromol Rapid Commun; 2018 Jul; 39(14):e1700726. PubMed ID: 29333667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doped Organic Transistors.
    Lüssem B; Keum CM; Kasemann D; Naab B; Bao Z; Leo K
    Chem Rev; 2016 Nov; 116(22):13714-13751. PubMed ID: 27696874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts.
    Tang CG; Ang MC; Choo KK; Keerthi V; Tan JK; Syafiqah MN; Kugler T; Burroughes JH; Png RQ; Chua LL; Ho PK
    Nature; 2016 Nov; 539(7630):536-540. PubMed ID: 27882976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants.
    Lu Y; Wang JY; Pei J
    Acc Chem Res; 2021 Jul; 54(13):2871-2883. PubMed ID: 34152131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of high-performance printed organic field-effect transistors and integrated circuits.
    Xu Y; Liu C; Khim D; Noh YY
    Phys Chem Chem Phys; 2015 Oct; 17(40):26553-74. PubMed ID: 25057765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport.
    Di CA; Shen H; Zhang F; Zhu D
    Acc Chem Res; 2019 Apr; 52(4):1113-1124. PubMed ID: 30908012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytic Device Model of Organic Field-Effect Transistors with Doped Channels.
    Liu S; Radha Krishnan RK; Dahal D; Lüssem B
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49857-49865. PubMed ID: 33103885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface engineering: an effective approach toward high-performance organic field-effect transistors.
    Di CA; Liu Y; Yu G; Zhu D
    Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Performance of Organic Field-Effect Transistors by a Molecular Dopant with High Electron Affinity.
    Lu W; Cao J; Zhai C; Bu L; Lu G; Zhu Y
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35548972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene as an electrode for solution-processed electron-transporting organic transistors.
    Parui S; Ribeiro M; Atxabal A; Llopis R; Casanova F; Hueso LE
    Nanoscale; 2017 Jul; 9(29):10178-10185. PubMed ID: 28517016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.
    Hu Y; Rengert ZD; McDowell C; Ford MJ; Wang M; Karki A; Lill AT; Bazan GC; Nguyen TQ
    ACS Nano; 2018 Apr; 12(4):3938-3946. PubMed ID: 29630351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of interfaces in the ideality of organic field-effect transistors.
    Wu X; Jia R; Pan J; Zhang X; Jie J
    Nanoscale Horiz; 2020 Mar; 5(3):454-472. PubMed ID: 32118236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation Doping for Threshold Voltage Control in Organic Field-Effect Transistors.
    Lashkov I; Krechan K; Ortstein K; Talnack F; Wang SJ; Mannsfeld SCB; Kleemann H; Leo K
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8664-8671. PubMed ID: 33569958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Environmental and Operational Stability of Polymer Field-Effect Transistors by Doping with Tetranitrofluorenone.
    Ghamari P; Niazi MR; Perepichka DF
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19290-19299. PubMed ID: 36944187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Nature of Charge-Injecting Contacts in Organic Field-Effect Transistors.
    Natali M; Prosa M; Longo A; Brucale M; Mercuri F; Buonomo M; Lago N; Benvenuti E; Prescimone F; Bettini C; Cester A; Melucci M; Muccini M; Toffanin S
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30616-30626. PubMed ID: 32519550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic field-effect transistor-based gas sensors.
    Zhang C; Chen P; Hu W
    Chem Soc Rev; 2015 Apr; 44(8):2087-107. PubMed ID: 25727357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.
    Salzmann I; Heimel G; Oehzelt M; Winkler S; Koch N
    Acc Chem Res; 2016 Mar; 49(3):370-8. PubMed ID: 26854611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hysteresis-Free, High-Performance Polymer-Dielectric Organic Field-Effect Transistors Enabled by Supercritical Fluid.
    Shi Y; Zheng Y; Wang J; Zhao R; Wang T; Zhao C; Chang KC; Meng H; Wang X
    Research (Wash D C); 2020; 2020():6587102. PubMed ID: 33015635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.