These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30101587)

  • 1. Density-Gradient Control over Nanoparticle Supercrystal Formation.
    Oh T; Ku JC; Lee JH; Hersam MC; Mirkin CA
    Nano Lett; 2018 Sep; 18(9):6022-6029. PubMed ID: 30101587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Density 2D Superlattices Assembled via Directional DNA Bonding.
    Miao Z; Zheng CY; Schatz GC; Lee B; Mirkin CA
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19035-19040. PubMed ID: 34310029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds.
    O'Brien MN; Lin HX; Girard M; Olvera de la Cruz M; Mirkin CA
    J Am Chem Soc; 2016 Nov; 138(44):14562-14565. PubMed ID: 27792331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticle Superlattices with Nonequilibrium Crystal Shapes.
    Ye M; Hueckel T; Gatenil PP; Nagao K; Carter WC; Macfarlane RJ
    ACS Nano; 2024 Jun; 18(24):15970-15977. PubMed ID: 38838258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA- and Field-Mediated Assembly of Magnetic Nanoparticles into High-Aspect Ratio Crystals.
    Park SS; Urbach ZJ; Brisbois CA; Parker KA; Partridge BE; Oh T; Dravid VP; Olvera de la Cruz M; Mirkin CA
    Adv Mater; 2020 Jan; 32(4):e1906626. PubMed ID: 31814172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-Dependent Optical Response in Anisotropic Nanoparticle-DNA Superlattices.
    Sun L; Lin H; Park DJ; Bourgeois MR; Ross MB; Ku JC; Schatz GC; Mirkin CA
    Nano Lett; 2017 Apr; 17(4):2313-2318. PubMed ID: 28358518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Symmetry Breaking in Colloidal Crystal Engineering with DNA.
    Laramy CR; Lopez-Rios H; O'Brien MN; Girard M; Stawicki RJ; Lee B; de la Cruz MO; Mirkin CA
    ACS Nano; 2019 Feb; 13(2):1412-1420. PubMed ID: 30585476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamically interchangeable nanoparticle superlattices through the use of nucleic acid-based allosteric effectors.
    Kim Y; Macfarlane RJ; Mirkin CA
    J Am Chem Soc; 2013 Jul; 135(28):10342-5. PubMed ID: 23822216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design principles for photonic crystals based on plasmonic nanoparticle superlattices.
    Sun L; Lin H; Kohlstedt KL; Schatz GC; Mirkin CA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7242-7247. PubMed ID: 29941604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitutable nanoparticle superlattices.
    Radha B; Senesi AJ; O'Brien MN; Wang MX; Auyeung E; Lee B; Mirkin CA
    Nano Lett; 2014; 14(4):2162-7. PubMed ID: 24641553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional emission from dye-functionalized plasmonic DNA superlattice microcavities.
    Park DJ; Ku JC; Sun L; Lethiec CM; Stern NP; Schatz GC; Mirkin CA
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):457-461. PubMed ID: 28053232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body centered tetragonal nanoparticle superlattices: why and when they form?
    Missoni L; Tagliazucchi M
    Nanoscale; 2021 Sep; 13(34):14371-14381. PubMed ID: 34473819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices.
    Ross MB; Ku JC; Vaccarezza VM; Schatz GC; Mirkin CA
    Nat Nanotechnol; 2015 May; 10(5):453-8. PubMed ID: 25867942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programming Nucleation and Growth in Colloidal Crystals Using DNA.
    Landy KM; Gibson KJ; Chan RR; Pietryga J; Weigand S; Mirkin CA
    ACS Nano; 2023 Apr; 17(7):6480-6487. PubMed ID: 36995781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Solution Flow on the Growth of Colloidal Crystals.
    Nozawa J; Uda S; Guo S; Toyotama A; Yamanaka J; Niinomi H; Okada J
    Langmuir; 2020 Apr; 36(16):4324-4331. PubMed ID: 32264682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA.
    Auyeung E; Morris W; Mondloch JE; Hupp JT; Farha OK; Mirkin CA
    J Am Chem Soc; 2015 Feb; 137(4):1658-62. PubMed ID: 25611764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Processing of DNA-Programmed Nanoparticle Superlattices.
    Zornberg LZ; Gabrys PA; Macfarlane RJ
    Nano Lett; 2019 Nov; 19(11):8074-8081. PubMed ID: 31602981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Colloidal Crystal Nucleation and Growth with Photolithographically Defined Templates.
    Hueckel T; Lewis DJ; Mertiri A; Carter DJD; Macfarlane RJ
    ACS Nano; 2023 Nov; 17(21):22121-22128. PubMed ID: 37921570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-mediated nanoparticle crystallization into Wulff polyhedra.
    Auyeung E; Li TI; Senesi AJ; Schmucker AL; Pals BC; de la Cruz MO; Mirkin CA
    Nature; 2014 Jan; 505(7481):73-7. PubMed ID: 24284632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.