These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30101659)

  • 1. Bootstrapping and Empirical Bayes Methods Improve Rhythm Detection in Sparsely Sampled Data.
    Hutchison AL; Allada R; Dinner AR
    J Biol Rhythms; 2018 Aug; 33(4):339-349. PubMed ID: 30101659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of five methods for genome-wide circadian gene identification.
    Wu G; Zhu J; Yu J; Zhou L; Huang JZ; Zhang Z
    J Biol Rhythms; 2014 Aug; 29(4):231-42. PubMed ID: 25238853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LimoRhyde2: Genomic analysis of biological rhythms based on effect sizes.
    Obodo D; Outland EH; Hughey JJ
    PLoS One; 2023; 18(12):e0292089. PubMed ID: 38096249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian detection of non-sinusoidal periodic patterns in circadian expression data.
    Chudova D; Ihler A; Lin KK; Andersen B; Smyth P
    Bioinformatics; 2009 Dec; 25(23):3114-20. PubMed ID: 19773336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data.
    Hutchison AL; Maienschein-Cline M; Chiang AH; Tabei SM; Gudjonson H; Bahroos N; Allada R; Dinner AR
    PLoS Comput Biol; 2015 Mar; 11(3):e1004094. PubMed ID: 25793520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets.
    Hughes ME; Hogenesch JB; Kornacker K
    J Biol Rhythms; 2010 Oct; 25(5):372-80. PubMed ID: 20876817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TimeTrial: An Interactive Application for Optimizing the Design and Analysis of Transcriptomic Time-Series Data in Circadian Biology Research.
    Ness-Cohn E; Iwanaszko M; Kath WL; Allada R; Braun R
    J Biol Rhythms; 2020 Oct; 35(5):439-451. PubMed ID: 32613882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved rhythmicity analysis method using Gaussian Processes detects cell-density dependent circadian oscillations in stem cells.
    Sahay S; Adhikari S; Hormoz S; Chakrabarti S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37769241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods detecting rhythmic gene expression are biologically relevant only for strong signal.
    Laloum D; Robinson-Rechavi M
    PLoS Comput Biol; 2020 Mar; 16(3):e1007666. PubMed ID: 32182235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Likelihood-based tests for detecting circadian rhythmicity and differential circadian patterns in transcriptomic applications.
    Ding H; Meng L; Liu AC; Gumz ML; Bryant AJ; Mcclung CA; Tseng GC; Esser KA; Huo Z
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TimeCycle: topology inspired method for the detection of cycling transcripts in circadian time-series data.
    Ness-Cohn E; Braun R
    Bioinformatics; 2021 Dec; 37(23):4405-4413. PubMed ID: 34175927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide circadian rhythm detection methods: systematic evaluations and practical guidelines.
    Mei W; Jiang Z; Chen Y; Chen L; Sancar A; Jiang Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32672832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation.
    Yang R; Su Z
    Bioinformatics; 2010 Jun; 26(12):i168-74. PubMed ID: 20529902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LSPR: an integrated periodicity detection algorithm for unevenly sampled temporal microarray data.
    Yang R; Zhang C; Su Z
    Bioinformatics; 2011 Apr; 27(7):1023-5. PubMed ID: 21296749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical Bayes screening of many p-values with applications to microarray studies.
    Datta S; Datta S
    Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding Clocks in Genes: A Bayesian Approach to Estimate Periodicity.
    Ren Y; Hong CI; Lim S; Song S
    Biomed Res Int; 2016; 2016():3017475. PubMed ID: 27340654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LimoRhyde2: genomic analysis of biological rhythms based on effect sizes.
    Obodo D; Outland EH; Hughey JJ
    bioRxiv; 2023 Feb; ():. PubMed ID: 36778295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of human circadian genes based on time course gene expression profiles by using a deep learning method.
    Cui P; Zhong T; Wang Z; Wang T; Zhao H; Liu C; Lu H
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2274-2283. PubMed ID: 29241666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variance adaptive shrinkage (vash): flexible empirical Bayes estimation of variances.
    Lu M; Stephens M
    Bioinformatics; 2016 Nov; 32(22):3428-3434. PubMed ID: 27436563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-independent rhythmic analysis of genome-wide expression patterns.
    Langmead CJ; Yan AK; McClung CR; Donald BR
    J Comput Biol; 2003; 10(3-4):521-36. PubMed ID: 12935342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.