BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30101780)

  • 1. A bioflocculant-supported dissolved air flotation system for the removal of suspended solids, lipids and protein matter from poultry slaughterhouse wastewater.
    Dlangamandla C; Ntwampe SKO; Basitere M
    Water Sci Technol; 2018 Aug; 78(1-2):452-458. PubMed ID: 30101780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimisation of bioflocculant production by a biofilm forming microorganism from poultry slaughterhouse wastewater for use in poultry wastewater treatment.
    Dlangamandla C; Dyantyi SA; Mpentshu YP; Ntwampe SK; Basitere M
    Water Sci Technol; 2016; 73(8):1963-8. PubMed ID: 27120651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing electrocoagulation for poultry slaughterhouse wastewater treatment: a fuzzy axiomatic design approach.
    Tanatti NP; Sezer M
    Environ Sci Pollut Res Int; 2024 May; 31(21):31159-31173. PubMed ID: 38627343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating coagulation pretreatment on poultry processing wastewater for dissolved air flotation.
    Dassey AJ; Theegala CS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(13):2069-76. PubMed ID: 22871004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of hydrocarbons from petrochemical wastewater by dissolved air flotation.
    Galil NI; Wolf D
    Water Sci Technol; 2001; 43(8):107-13. PubMed ID: 11394262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of effluents of poultry slaughterhouse with aluminum salts and natural polyelectrolytes.
    Ikeda E; Rodrigues DG; Nozaki J
    Environ Technol; 2002 Aug; 23(8):949-54. PubMed ID: 12211454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poultry slaughterhouse wastewater treatment plant for high quality effluent.
    Del Nery V; Damianovic MH; Moura RB; Pozzi E; Pires EC; Foresti E
    Water Sci Technol; 2016; 73(2):309-16. PubMed ID: 26819386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of poultry slaughterhouse wastewater using a static granular bed reactor (SGBR) coupled with ultrafiltration (UF) membrane system.
    Basitere M; Rinquest Z; Njoya M; Sheldon MS; Ntwampe SKO
    Water Sci Technol; 2017 Jul; 76(1-2):106-114. PubMed ID: 28708615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coagulant selection and sludge conditioning in a slaughterhouse wastewater treatment plant.
    Al-Mutairi NZ; Hamoda MF; Al-Ghusain I
    Bioresour Technol; 2004 Nov; 95(2):115-9. PubMed ID: 15246434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a hydrodynamic cavitation-type bubble generator in a prototype bench-scale flotation unit for poultry processing wastewater treatment.
    Legarda Bermúdez G; Gaviria López C; Guarín Arenas F
    Environ Technol; 2024 Mar; 45(7):1436-1448. PubMed ID: 36508608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poultry Slaughterhouse Wastewater Treatment Using Submerged Fibers in an Attached Growth Sequential Batch Reactor.
    Aziz HA; Puat NNA; Alazaiza MYD; Hung YT
    Int J Environ Res Public Health; 2018 Aug; 15(8):. PubMed ID: 30104522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of upflow anaerobic sludge blanket reactors in the treatment of poultry slaughterhouse wastewater.
    Del Nery V; Damianovic MH; Barros FG
    Water Sci Technol; 2001; 44(4):83-8. PubMed ID: 11575105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slaughterhouse wastewater treatment using an advanced oxidation process: Optimization study.
    Davarnejad R; Nasiri S
    Environ Pollut; 2017 Apr; 223():1-10. PubMed ID: 28129953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated processes for produced water polishing: Enhanced flotation/sedimentation combined with advanced oxidation processes.
    Jiménez S; Micó MM; Arnaldos M; Ferrero E; Malfeito JJ; Medina F; Contreras S
    Chemosphere; 2017 Feb; 168():309-317. PubMed ID: 27810529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of Poultry Slaughterhouse Wastewater (PSW) Using a Pretreatment Stage, an Expanded Granular Sludge Bed Reactor (EGSB), and a Membrane Bioreactor (MBR).
    Meyo HB; Njoya M; Basitere M; Ntwampe SKO; Kaskote E
    Membranes (Basel); 2021 May; 11(5):. PubMed ID: 34066722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency analysis of the electrocoagulation and electroflotation treatment of poultry slaughterhouse wastewater using aluminum and graphite anodes.
    Paulista LO; Presumido PH; Theodoro JDP; Pinheiro ALN
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19790-19800. PubMed ID: 29736656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced separation of water quality parameters in the DAF (Dissolved Air Flotation) system using ozone.
    Lee BH; Song WC; Kim HY; Kim JH
    Water Sci Technol; 2007; 56(10):149-55. PubMed ID: 18048988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upgrade of deep bed filtration with activated carbon dosage for compact micropollutant removal from wastewater in technical scale.
    Löwenberg J; Zenker A; Krahnstöver T; Boehler M; Baggenstos M; Koch G; Wintgens T
    Water Res; 2016 May; 94():246-256. PubMed ID: 26963607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slaughterhouse wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor.
    Caixeta CE; Cammarota MC; Xavier AM
    Bioresour Technol; 2002 Jan; 81(1):61-9. PubMed ID: 11710346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of dissolved ozone flotation for the enhanced treatment of bio-treated drilling wastewater from a gas field.
    Jin X; Zhang L; Liu M; Hu S; Yao Z; Liang J; Wang R; Xu L; Shi X; Bai X; Jin P; Wang XC
    Chemosphere; 2022 Jul; 298():134290. PubMed ID: 35278446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.