BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 30101831)

  • 21. Combining Wax Printing with Hot Embossing for the Design of Geometrically Well-Defined Microfluidic Papers.
    Postulka N; Striegel A; Krauße M; Mager D; Spiehl D; Meckel T; Worgull M; Biesalski M
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4578-4587. PubMed ID: 30582798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling flow in microfluidic channels with a manually actuated pin valve.
    Brett ME; Zhao S; Stoia JL; Eddington DT
    Biomed Microdevices; 2011 Aug; 13(4):633-9. PubMed ID: 21472409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes.
    Ordeig O; Godino N; del Campo J; Muñoz FX; Nikolajeff F; Nyholm L
    Anal Chem; 2008 May; 80(10):3622-32. PubMed ID: 18386910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphology-Patterned Anisotropic Wetting Surface for Fluid Control and Gas-Liquid Separation in Microfluidics.
    Wang S; Yu N; Wang T; Ge P; Ye S; Xue P; Liu W; Shen H; Zhang J; Yang B
    ACS Appl Mater Interfaces; 2016 May; 8(20):13094-103. PubMed ID: 27128986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synchronization and control of capillary flows in rectangular microchannel with spacers.
    Song K; Zhang L; Zhou Z; Huang R; Zheng X
    Biomicrofluidics; 2020 Jul; 14(4):044105. PubMed ID: 32699565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Miniaturised medium pressure capillary liquid chromatography system with flexible open platform design using off-the-shelf microfluidic components.
    Li Y; Dvořák M; Nesterenko PN; Stanley R; Nuchtavorn N; Krčmová LK; Aufartová J; Macka M
    Anal Chim Acta; 2015 Oct; 896():166-76. PubMed ID: 26482001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane-activated microfluidic rotary devices for pumping and mixing.
    Tseng HY; Wang CH; Lin WY; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microvalve Enabled Digital Microfluidic Systems for High Performance Biochemical and Genetic Analysis.
    Jensen EC; Zeng Y; Kim J; Mathies RA
    JALA Charlottesv Va; 2010 Dec; 15(6):455-463. PubMed ID: 21218162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study on Flow Characteristics of Working Medium in Microchannel Simulated by Porous Media Model.
    Xue Y; Guo C; Gu X; Xu Y; Xue L; Lin H
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of Capillary-Driven Flow in 3D Printed Open Microchannels.
    Lade RK; Hippchen EJ; Macosko CW; Francis LF
    Langmuir; 2017 Mar; 33(12):2949-2964. PubMed ID: 28274121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple actuation microvalves in wax microfluidics.
    Díaz-González M; Fernández-Sánchez C; Baldi A
    Lab Chip; 2016 Oct; 16(20):3969-3976. PubMed ID: 27714007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A valve-less microfluidic peristaltic pumping method.
    Zhang X; Chen Z; Huang Y
    Biomicrofluidics; 2015 Jan; 9(1):014118. PubMed ID: 25759751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance Optimization of Microvalves Based on a Microhole Array for Microfluidic Chips.
    Sun C; You H; Xie Y; Xu RX
    J Anal Methods Chem; 2020; 2020():8842890. PubMed ID: 32963881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple and reliable microfabrication process for a programmable microvalve array.
    Estlack Z; Compton B; Razu ME; Kim J
    MethodsX; 2022; 9():101860. PubMed ID: 36187155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic micro-TAS devices.
    Hsu YC; Chen TY
    Biomed Microdevices; 2007 Aug; 9(4):513-22. PubMed ID: 17516175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An automated, pre-programmed, multiplexed, hydraulic microvalve.
    Kim J; Chen D; Bau HH
    Lab Chip; 2009 Dec; 9(24):3594-8. PubMed ID: 20024041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.
    Fiorini GS; Jeffries GD; Lim DS; Kuyper CL; Chiu DT
    Lab Chip; 2003 Aug; 3(3):158-63. PubMed ID: 15100767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and fabrication of a microfluidic chip to detect tumor markers.
    Sun C; You H; Gao N; Chang J; Gao Q; Xie Y; Xie Y; Xu RX
    RSC Adv; 2020 Oct; 10(65):39779-39785. PubMed ID: 35515361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer.
    Koesdjojo MT; Tennico YH; Remcho VT
    Anal Chem; 2008 Apr; 80(7):2311-8. PubMed ID: 18303914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.