BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30102042)

  • 1. Interface Residues That Drive Allosteric Transitions Also Control the Assembly of l-Lactate Dehydrogenase.
    Chen J; Thirumalai D
    J Phys Chem B; 2018 Dec; 122(49):11195-11205. PubMed ID: 30102042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Simple and Unique Allosteric Machinery of Thermus caldophilus Lactate Dehydrogenase : Structure-Function Relationship in Bacterial Allosteric LDHs.
    Taguchi H
    Adv Exp Med Biol; 2017; 925():117-145. PubMed ID: 27815924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of allosteric transition of bacterial L-lactate dehydrogenase.
    Ohta T; Yokota K; Minowa T; Iwata S
    Faraday Discuss; 1992; (93):153-62. PubMed ID: 1290930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions.
    Colletier JP; Aleksandrov A; Coquelle N; Mraihi S; Mendoza-Barberá E; Field M; Madern D
    Mol Biol Evol; 2012 Jun; 29(6):1683-94. PubMed ID: 22319152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The core of allosteric motion in Thermus caldophilus L-lactate dehydrogenase.
    Ikehara Y; Arai K; Furukawa N; Ohno T; Miyake T; Fushinobu S; Nakajima M; Miyanaga A; Taguchi H
    J Biol Chem; 2014 Nov; 289(45):31550-64. PubMed ID: 25258319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis of allosteric activation of bacterial L-lactate dehydrogenase.
    Iwata S; Ohta T
    J Mol Biol; 1993 Mar; 230(1):21-7. PubMed ID: 8450537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric communication in dihydrofolate reductase: signaling network and pathways for closed to occluded transition and back.
    Chen J; Dima RI; Thirumalai D
    J Mol Biol; 2007 Nov; 374(1):250-66. PubMed ID: 17916364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.
    Tehver R; Chen J; Thirumalai D
    J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T and R states in the crystals of bacterial L-lactate dehydrogenase reveal the mechanism for allosteric control.
    Iwata S; Kamata K; Yoshida S; Minowa T; Ohta T
    Nat Struct Biol; 1994 Mar; 1(3):176-85. PubMed ID: 7656036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric activation of L-lactate dehydrogenase analyzed by hybrid enzymes with effector-sensitive and -insensitive subunits.
    Fushinobu S; Kamata K; Iwata S; Sakai H; Ohta T; Matsuzawa H
    J Biol Chem; 1996 Oct; 271(41):25611-6. PubMed ID: 8810336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal activation of 'allosteric-like' large-scale motions in a eukaryotic Lactate Dehydrogenase.
    Katava M; Maccarini M; Villain G; Paciaroni A; Sztucki M; Ivanova O; Madern D; Sterpone F
    Sci Rep; 2017 Jan; 7():41092. PubMed ID: 28112231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of non-allosteric L-lactate dehydrogenase from Lactobacillus pentosus at 2.3 A resolution: specific interactions at subunit interfaces.
    Uchikoba H; Fushinobu S; Wakagi T; Konno M; Taguchi H; Matsuzawa H
    Proteins; 2002 Feb; 46(2):206-14. PubMed ID: 11807949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric activation in Bacillus stearothermophilus lactate dehydrogenase investigated by an X-ray crystallographic analysis of a mutant designed to prevent tetramerization of the enzyme.
    Cameron AD; Roper DI; Moreton KM; Muirhead H; Holbrook JJ; Wigley DB
    J Mol Biol; 1994 May; 238(4):615-25. PubMed ID: 8176749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active and inactive state structures of unliganded Lactobacillus casei allosteric L-lactate dehydrogenase.
    Arai K; Ishimitsu T; Fushinobu S; Uchikoba H; Matsuzawa H; Taguchi H
    Proteins; 2010 Feb; 78(3):681-94. PubMed ID: 19787773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular design that stabilizes active state in bacterial allosteric L-lactate dehydrogenases.
    Arai K; Ichikawa J; Nonaka S; Miyanaga A; Uchikoba H; Fushinobu S; Taguchi H
    J Biochem; 2011 Nov; 150(5):579-91. PubMed ID: 21828088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence and characteristics of the Bifidobacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site.
    Minowa T; Iwata S; Sakai H; Masaki H; Ohta T
    Gene; 1989 Dec; 85(1):161-8. PubMed ID: 2695396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations that significantly change the stability, flexibility and quaternary structure of the l-lactate dehydrogenase from Bacillus megaterium.
    Kotik M; Zuber H
    Eur J Biochem; 1993 Jan; 211(1-2):267-80. PubMed ID: 8425537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for allosteric activation of protease DegS by ligand binding and oligomerization as revealed from molecular dynamics simulations.
    Lu C; Stock G; Knecht V
    Proteins; 2016 Nov; 84(11):1690-1705. PubMed ID: 27556733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single amino acid substitution deregulates a bacterial lactate dehydrogenase and stabilizes its tetrameric structure.
    Clarke AR; Wigley DB; Barstow DA; Chia WN; Atkinson T; Holbrook JJ
    Biochim Biophys Acta; 1987 May; 913(1):72-80. PubMed ID: 3580377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational equilibrium of an enzyme catalytic site in the allosteric transition.
    Koide S; Yokoyama S; Matsuzawa H; Miyazawa T; Ohta T
    Biochemistry; 1992 Jun; 31(23):5362-8. PubMed ID: 1606160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.