These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 3010243)

  • 1. Expression of the major heat shock gene of Drosophila melanogaster in Saccharomyces cerevisiae.
    de Banzie JS; Sinclair L; Lis JT
    Nucleic Acids Res; 1986 Apr; 14(8):3587-601. PubMed ID: 3010243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of a Drosophila heat-shock gene in cells of the yeast Saccharomyces cerevisiae.
    Nicholson RC; Moran LA
    Biosci Rep; 1984 Nov; 4(11):963-72. PubMed ID: 6098321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inducible transcription and puffing in Drosophila melanogaster transformed with hsp70-phage lambda hybrid heat shock genes.
    Cohen RS; Meselson M
    Proc Natl Acad Sci U S A; 1984 Sep; 81(17):5509-13. PubMed ID: 6089207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution mapping of DNase I-hypersensitive sites of Drosophila heat shock genes in Drosophila melanogaster and Saccharomyces cerevisiae.
    Costlow N; Lis JT
    Mol Cell Biol; 1984 Sep; 4(9):1853-63. PubMed ID: 6436689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flounder antifreeze protein synthesis under heat shock control in transgenic Drosophila melanogaster.
    Rancourt DE; Walker VK; Davies PL
    Mol Cell Biol; 1987 Jun; 7(6):2188-95. PubMed ID: 3037350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the hsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus of D. melanogaster.
    Hackett RW; Lis JT
    Nucleic Acids Res; 1983 Oct; 11(20):7011-30. PubMed ID: 6314271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two closely linked transcription units within the 63B heat shock puff locus of D. melanogaster display strikingly different regulation.
    O'Connor D; Lis JT
    Nucleic Acids Res; 1981 Oct; 9(19):5075-92. PubMed ID: 6118854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Granok H; Elgin SC
    Mol Cell Biol; 1993 May; 13(5):2802-14. PubMed ID: 8474442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two or more copies of Drosophila heat shock consensus sequence serve to activate transcription in yeast.
    Wei R; Wilkinson H; Pfeifer K; Schneider C; Young R; Guarente L
    Nucleic Acids Res; 1986 Oct; 14(20):8183-8. PubMed ID: 3095794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA damage and heat shock dually regulate genes in Saccharomyces cerevisiae.
    McClanahan T; McEntee K
    Mol Cell Biol; 1986 Jan; 6(1):90-6. PubMed ID: 3023840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of the 70K heat shock gene and related genes in Saccharomyces cerevisiae.
    Ellwood MS; Craig EA
    Mol Cell Biol; 1984 Aug; 4(8):1454-9. PubMed ID: 6436685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth.
    Craig EA; Kramer J; Kosic-Smithers J
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4156-60. PubMed ID: 3035571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two major RNA products are transcribed from heat-shock locus 93D of Drosophila melanogaster.
    Ryseck RP; Walldorf U; Hovemann B
    Chromosoma; 1985; 93(1):17-20. PubMed ID: 2415308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization and expression of transformed DNA sequences within heat shock puffs of Drosophila melanogaster.
    Simon JA; Sutton CA; Lis JT
    Chromosoma; 1985; 93(1):26-30. PubMed ID: 3933923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae.
    Wieser R; Adam G; Wagner A; Schüller C; Marchler G; Ruis H; Krawiec Z; Bilinski T
    J Biol Chem; 1991 Jul; 266(19):12406-11. PubMed ID: 2061315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae.
    Boorstein WR; Craig EA
    J Biol Chem; 1990 Nov; 265(31):18912-21. PubMed ID: 2121731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration, transcription, and control of a Drosophila heat shock gene in mouse cells.
    Corces V; Pellicer A; Axel R; Meselson M
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):7038-42. PubMed ID: 6273904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a Drosophila heat-shock protein in Xenopus oocytes: conserved and divergent regulatory signals.
    Bienz M; Pelham HR
    EMBO J; 1982; 1(12):1583-8. PubMed ID: 6821336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification, molecular cloning, and mutagenesis of Saccharomyces cerevisiae RNA polymerase genes.
    Ingles CJ; Himmelfarb HJ; Shales M; Greenleaf AL; Friesen JD
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):2157-61. PubMed ID: 6326108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock.
    Vivino AA; Smith MD; Minton KW
    Mol Cell Biol; 1986 Dec; 6(12):4767-9. PubMed ID: 3099173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.