BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 3010243)

  • 1. Expression of the major heat shock gene of Drosophila melanogaster in Saccharomyces cerevisiae.
    de Banzie JS; Sinclair L; Lis JT
    Nucleic Acids Res; 1986 Apr; 14(8):3587-601. PubMed ID: 3010243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of a Drosophila heat-shock gene in cells of the yeast Saccharomyces cerevisiae.
    Nicholson RC; Moran LA
    Biosci Rep; 1984 Nov; 4(11):963-72. PubMed ID: 6098321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inducible transcription and puffing in Drosophila melanogaster transformed with hsp70-phage lambda hybrid heat shock genes.
    Cohen RS; Meselson M
    Proc Natl Acad Sci U S A; 1984 Sep; 81(17):5509-13. PubMed ID: 6089207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution mapping of DNase I-hypersensitive sites of Drosophila heat shock genes in Drosophila melanogaster and Saccharomyces cerevisiae.
    Costlow N; Lis JT
    Mol Cell Biol; 1984 Sep; 4(9):1853-63. PubMed ID: 6436689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flounder antifreeze protein synthesis under heat shock control in transgenic Drosophila melanogaster.
    Rancourt DE; Walker VK; Davies PL
    Mol Cell Biol; 1987 Jun; 7(6):2188-95. PubMed ID: 3037350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the hsp83 transcript within a 3292 nucleotide sequence from the 63B heat shock locus of D. melanogaster.
    Hackett RW; Lis JT
    Nucleic Acids Res; 1983 Oct; 11(20):7011-30. PubMed ID: 6314271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two closely linked transcription units within the 63B heat shock puff locus of D. melanogaster display strikingly different regulation.
    O'Connor D; Lis JT
    Nucleic Acids Res; 1981 Oct; 9(19):5075-92. PubMed ID: 6118854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Granok H; Elgin SC
    Mol Cell Biol; 1993 May; 13(5):2802-14. PubMed ID: 8474442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two or more copies of Drosophila heat shock consensus sequence serve to activate transcription in yeast.
    Wei R; Wilkinson H; Pfeifer K; Schneider C; Young R; Guarente L
    Nucleic Acids Res; 1986 Oct; 14(20):8183-8. PubMed ID: 3095794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA damage and heat shock dually regulate genes in Saccharomyces cerevisiae.
    McClanahan T; McEntee K
    Mol Cell Biol; 1986 Jan; 6(1):90-6. PubMed ID: 3023840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of the 70K heat shock gene and related genes in Saccharomyces cerevisiae.
    Ellwood MS; Craig EA
    Mol Cell Biol; 1984 Aug; 4(8):1454-9. PubMed ID: 6436685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth.
    Craig EA; Kramer J; Kosic-Smithers J
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4156-60. PubMed ID: 3035571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two major RNA products are transcribed from heat-shock locus 93D of Drosophila melanogaster.
    Ryseck RP; Walldorf U; Hovemann B
    Chromosoma; 1985; 93(1):17-20. PubMed ID: 2415308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization and expression of transformed DNA sequences within heat shock puffs of Drosophila melanogaster.
    Simon JA; Sutton CA; Lis JT
    Chromosoma; 1985; 93(1):26-30. PubMed ID: 3933923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae.
    Wieser R; Adam G; Wagner A; Schüller C; Marchler G; Ruis H; Krawiec Z; Bilinski T
    J Biol Chem; 1991 Jul; 266(19):12406-11. PubMed ID: 2061315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae.
    Boorstein WR; Craig EA
    J Biol Chem; 1990 Nov; 265(31):18912-21. PubMed ID: 2121731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration, transcription, and control of a Drosophila heat shock gene in mouse cells.
    Corces V; Pellicer A; Axel R; Meselson M
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):7038-42. PubMed ID: 6273904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a Drosophila heat-shock protein in Xenopus oocytes: conserved and divergent regulatory signals.
    Bienz M; Pelham HR
    EMBO J; 1982; 1(12):1583-8. PubMed ID: 6821336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification, molecular cloning, and mutagenesis of Saccharomyces cerevisiae RNA polymerase genes.
    Ingles CJ; Himmelfarb HJ; Shales M; Greenleaf AL; Friesen JD
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):2157-61. PubMed ID: 6326108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DNA damage-responsive Drosophila melanogaster gene is also induced by heat shock.
    Vivino AA; Smith MD; Minton KW
    Mol Cell Biol; 1986 Dec; 6(12):4767-9. PubMed ID: 3099173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.