BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30102763)

  • 1. Epitope-specific affinity maturation improved stability of potent protease inhibitory antibodies.
    Lopez T; Chuan C; Ramirez A; Chen KE; Lorenson MY; Benitez C; Mustafa Z; Pham H; Sanchez R; Walker AM; Ge X
    Biotechnol Bioeng; 2018 Nov; 115(11):2673-2682. PubMed ID: 30102763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing proteolytic liability of a MMP-14 inhibitory antibody by site-saturation mutagenesis.
    Lee KB; Dunn Z; Ge X
    Protein Sci; 2019 Mar; 28(3):643-653. PubMed ID: 30592555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective function-blocking monoclonal human antibody highlights the important role of membrane type-1 matrix metalloproteinase (MT1-MMP) in metastasis.
    Remacle AG; Cieplak P; Nam DH; Shiryaev SA; Ge X; Strongin AY
    Oncotarget; 2017 Jan; 8(2):2781-2799. PubMed ID: 27835863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of highly selective MMP-14 inhibitory Fabs by deep sequencing.
    Lopez T; Nam DH; Kaihara E; Mustafa Z; Ge X
    Biotechnol Bioeng; 2017 Jun; 114(6):1140-1150. PubMed ID: 28090632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectivity Conversion of Protease Inhibitory Antibodies.
    Lopez T; Ramirez A; Benitez C; Mustafa Z; Pham H; Sanchez R; Ge X
    Antib Ther; 2018 Sep; 1(2):55-63. PubMed ID: 30406213
    [No Abstract]   [Full Text] [Related]  

  • 6. Protease Inhibition Mechanism of Camelid-like Synthetic Human Antibodies.
    Nam DH; Lee KB; Kruchowy E; Pham H; Ge X
    Biochemistry; 2020 Oct; 59(40):3802-3812. PubMed ID: 32997500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of inhibitory monoclonal antibodies targeting matrix metalloproteinase-14 by motif grafting and CDR optimization.
    Nam DH; Fang K; Rodriguez C; Lopez T; Ge X
    Protein Eng Des Sel; 2017 Feb; 30(2):113-118. PubMed ID: 27986919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional selection of protease inhibitory antibodies.
    Lopez T; Mustafa Z; Chen C; Lee KB; Ramirez A; Benitez C; Luo X; Ji RR; Ge X
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16314-16319. PubMed ID: 31363054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active-site MMP-selective antibody inhibitors discovered from convex paratope synthetic libraries.
    Nam DH; Rodriguez C; Remacle AG; Strongin AY; Ge X
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):14970-14975. PubMed ID: 27965386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioorthogonal PEGylation Prolongs the Elimination Half-Life of N-TIMP2 While Retaining MMP Inhibition.
    Hayun H; Arkadash V; Sananes A; Arbely E; Stepensky D; Papo N
    Bioconjug Chem; 2022 May; 33(5):795-806. PubMed ID: 35446024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed Loop Extension Followed by Combinatorial Screening Confers High Specificity to a Broad Matrix MetalloproteinaseInhibitor.
    Bonadio A; Wenig BL; Hockla A; Radisky ES; Shifman JM
    J Mol Biol; 2023 Jul; 435(13):168095. PubMed ID: 37068580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of highly selective monoclonal antibodies inhibiting a recalcitrant protease using decoy designs.
    Lee KB; Dunn ZS; Lopez T; Mustafa Z; Ge X
    Biotechnol Bioeng; 2020 Dec; 117(12):3664-3676. PubMed ID: 32716053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Highly Selective MMP Antibody Inhibitors.
    Nam DH; Ge X
    Methods Mol Biol; 2018; 1731():307-324. PubMed ID: 29318563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a high-affinity monoclonal antibody to calcineurin whose epitope defines a new structural domain of calcineurin A.
    Hubbard MJ; Klee CB
    Eur J Biochem; 1989 Nov; 185(2):411-8. PubMed ID: 2479557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affinity maturation and fine functional mapping of an antibody fragment against a novel neutralizing epitope on human vascular endothelial growth factor.
    Lamdan H; Gavilondo JV; Muñoz Y; Pupo A; Huerta V; Musacchio A; Pérez L; Ayala M; Rojas G; Balint RF; Larrick JW
    Mol Biosyst; 2013 Aug; 9(8):2097-106. PubMed ID: 23702826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition mechanism of membrane metalloprotease by an exosite-swiveling conformational antibody.
    Udi Y; Grossman M; Solomonov I; Dym O; Rozenberg H; Moreno V; Cuniasse P; Dive V; Arroyo AG; Sagi I
    Structure; 2015 Jan; 23(1):104-115. PubMed ID: 25482542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective inhibition of matrix metalloproteinase 10 (MMP10) with a single-domain antibody.
    Razai AS; Eckelman BP; Salvesen GS
    J Biol Chem; 2020 Feb; 295(8):2464-2472. PubMed ID: 31953328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation and optimization of human antagonistic antibodies against TIMP-1 as potential therapeutic agents in fibrotic diseases.
    Brocks B; Kraft S; Zahn S; Noll S; Pan C; Schauer M; Krebs B
    Hum Antibodies; 2006; 15(4):115-24. PubMed ID: 17522433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of peptide inhibitors of matrix metalloproteinase 1 using an in-house assay system for the enzyme.
    Min MW; Kim CE; Chauhan S; Park HJ; Park CS; Yoo TH; Kang TJ
    Enzyme Microb Technol; 2019 Aug; 127():65-69. PubMed ID: 31088619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity maturation of a humanized rat antibody for anti-RAGE therapy: comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions.
    Finlay WJ; Cunningham O; Lambert MA; Darmanin-Sheehan A; Liu X; Fennell BJ; Mahon CM; Cummins E; Wade JM; O'Sullivan CM; Tan XY; Piche N; Pittman DD; Paulsen J; Tchistiakova L; Kodangattil S; Gill D; Hufton SE
    J Mol Biol; 2009 May; 388(3):541-58. PubMed ID: 19285987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.