These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Foreman-Ortiz IU; Liang D; Laudadio ED; Calderin JD; Wu M; Keshri P; Zhang X; Schwartz MP; Hamers RJ; Rotello VM; Murphy CJ; Cui Q; Pedersen JA Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27854-27861. PubMed ID: 33106430 [TBL] [Abstract][Full Text] [Related]
3. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET. Domanov YA; Molotkovsky JG; Gorbenko GP Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372 [TBL] [Abstract][Full Text] [Related]
4. Cascading Effects of Nanoparticle Coatings: Surface Functionalization Dictates the Assemblage of Complexed Proteins and Subsequent Interaction with Model Cell Membranes. Melby ES; Lohse SE; Park JE; Vartanian AM; Putans RA; Abbott HB; Hamers RJ; Murphy CJ; Pedersen JA ACS Nano; 2017 Jun; 11(6):5489-5499. PubMed ID: 28482159 [TBL] [Abstract][Full Text] [Related]
5. Effect of functionalized gold nanoparticles on floating lipid bilayers. Tatur S; Maccarini M; Barker R; Nelson A; Fragneto G Langmuir; 2013 Jun; 29(22):6606-14. PubMed ID: 23638939 [TBL] [Abstract][Full Text] [Related]
6. Specular neutron reflectivity studies of the interaction of cytochrome c with supported phosphatidylcholine bilayers doped with phosphatidylserine. Dabkowska AP; Fragneto G; Hughes AV; Quinn PJ; Lawrence MJ Langmuir; 2009 Apr; 25(7):4203-10. PubMed ID: 19714900 [TBL] [Abstract][Full Text] [Related]
7. Nanoparticles at Biomimetic Interfaces: Combined Experimental and Simulation Study on Charged Gold Nanoparticles/Lipid Bilayer Interfaces. Pfeiffer T; De Nicola A; Montis C; Carlà F; van der Vegt NFA; Berti D; Milano G J Phys Chem Lett; 2019 Jan; 10(2):129-137. PubMed ID: 30563321 [TBL] [Abstract][Full Text] [Related]
8. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers. Lolicato F; Joly L; Martinez-Seara H; Fragneto G; Scoppola E; Baldelli Bombelli F; Vattulainen I; Akola J; Maccarini M Small; 2019 Jun; 15(23):e1805046. PubMed ID: 31012268 [TBL] [Abstract][Full Text] [Related]
9. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study. Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544 [TBL] [Abstract][Full Text] [Related]
10. Cytochrome c adsorption to supported, anionic lipid bilayers studied via atomic force microscopy. Choi EJ; Dimitriadis EK Biophys J; 2004 Nov; 87(5):3234-41. PubMed ID: 15347587 [TBL] [Abstract][Full Text] [Related]
11. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations. Van Lehn RC; Alexander-Katz A Soft Matter; 2015 Apr; 11(16):3165-75. PubMed ID: 25757187 [TBL] [Abstract][Full Text] [Related]
12. Preferential Binding of Cytochrome c to Anionic Ligand-Coated Gold Nanoparticles: A Complementary Computational and Experimental Approach. Tollefson EJ; Allen CR; Chong G; Zhang X; Rozanov ND; Bautista A; Cerda JJ; Pedersen JA; Murphy CJ; Carlson EE; Hernandez R ACS Nano; 2019 Jun; 13(6):6856-6866. PubMed ID: 31082259 [TBL] [Abstract][Full Text] [Related]
13. Cytochrome c interaction with neutral lipid membranes: influence of lipid packing and protein charges. El Kirat K; Morandat S Chem Phys Lipids; 2009 Nov; 162(1-2):17-24. PubMed ID: 19699729 [TBL] [Abstract][Full Text] [Related]
14. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers. Gao J; Zhang O; Ren J; Wu C; Zhao Y Langmuir; 2016 Feb; 32(6):1601-10. PubMed ID: 26794292 [TBL] [Abstract][Full Text] [Related]
15. Förster Resonance Energy Transfer Study of Cytochrome c-Lipid Interactions. Gorbenko GP; Trusova V; Molotkovsky JG J Fluoresc; 2018 Jan; 28(1):79-88. PubMed ID: 28879486 [TBL] [Abstract][Full Text] [Related]
16. Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins. Van Lehn RC; Alexander-Katz A J Phys Chem B; 2014 Nov; 118(44):12586-98. PubMed ID: 25347475 [TBL] [Abstract][Full Text] [Related]
17. Effect of gold nanoparticle on structure and fluidity of lipid membrane. Mhashal AR; Roy S PLoS One; 2014; 9(12):e114152. PubMed ID: 25469786 [TBL] [Abstract][Full Text] [Related]
18. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
19. Molecular model of hemoglobin N from Mycobacterium tuberculosis bound to lipid bilayers: a combined spectroscopic and computational study. Rhéault JF; Gagné È; Guertin M; Lamoureux G; Auger M; Lagüe P Biochemistry; 2015 Mar; 54(11):2073-84. PubMed ID: 25723781 [TBL] [Abstract][Full Text] [Related]
20. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes. Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]