These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 30102971)
1. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO Wang Q; Xu J; Sun Z; Luan Y; Li Y; Wang J; Liang Q; Qi Q Metab Eng; 2019 Jan; 51():79-87. PubMed ID: 30102971 [TBL] [Abstract][Full Text] [Related]
2. Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli. Li Y; Xian H; Xu Y; Zhu Y; Sun Z; Wang Q; Qi Q Microb Cell Fact; 2021 Feb; 20(1):32. PubMed ID: 33531004 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the Glucose Flux of an Engineered EP-Bifido Pathway for High Poly(Hydroxybutyrate) Yield Production. Li Y; Sun Z; Xu Y; Luan Y; Xu J; Liang Q; Qi Q; Wang Q Front Bioeng Biotechnol; 2020; 8():517336. PubMed ID: 32984296 [TBL] [Abstract][Full Text] [Related]
4. Effect of precise control of flux ratio between the glycolytic pathways on mevalonate production in Escherichia coli. Kamata K; Toya Y; Shimizu H Biotechnol Bioeng; 2019 May; 116(5):1080-1088. PubMed ID: 30636280 [TBL] [Abstract][Full Text] [Related]
5. Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis. Zheng Y; Yuan Q; Yang X; Ma H Enzyme Microb Technol; 2017 Nov; 106():60-66. PubMed ID: 28859811 [TBL] [Abstract][Full Text] [Related]
6. Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability. Centeno-Leija S; Huerta-Beristain G; Giles-Gómez M; Bolivar F; Gosset G; Martinez A Antonie Van Leeuwenhoek; 2014 Apr; 105(4):687-96. PubMed ID: 24500003 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Lin Z; Zhang Y; Yuan Q; Liu Q; Li Y; Wang Z; Ma H; Chen T; Zhao X Microb Cell Fact; 2015 Nov; 14():185. PubMed ID: 26589676 [TBL] [Abstract][Full Text] [Related]
8. Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. van Wegen RJ; Lee SY; Middelberg AP Biotechnol Bioeng; 2001 Jul; 74(1):70-80. PubMed ID: 11353412 [TBL] [Abstract][Full Text] [Related]
9. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply. Liang WF; Cui LY; Cui JY; Yu KW; Yang S; Wang TM; Guan CG; Zhang C; Xing XH Metab Eng; 2017 Jan; 39():159-168. PubMed ID: 27919791 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Zhang S; Yang W; Chen H; Liu B; Lin B; Tao Y Microb Cell Fact; 2019 Aug; 18(1):130. PubMed ID: 31387584 [TBL] [Abstract][Full Text] [Related]
12. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Kocharin K; Siewers V; Nielsen J Biotechnol Bioeng; 2013 Aug; 110(8):2216-24. PubMed ID: 23456608 [TBL] [Abstract][Full Text] [Related]
13. Truncating the Structure of Lipopolysaccharide in Wang J; Ma W; Fang Y; Zhang H; Liang H; Li Y; Wang X ACS Synth Biol; 2020 May; 9(5):1201-1215. PubMed ID: 32302096 [TBL] [Abstract][Full Text] [Related]
14. A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli. Durante-Rodríguez G; de Lorenzo V; Nikel PI ACS Synth Biol; 2018 Nov; 7(11):2686-2697. PubMed ID: 30346720 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene. Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870 [TBL] [Abstract][Full Text] [Related]
16. Functional evaluation of non-oxidative glycolysis in Escherichia coli in the stationary phase under microaerobic conditions. Miyoshi K; Kawai R; Niide T; Toya Y; Shimizu H J Biosci Bioeng; 2023 Apr; 135(4):291-297. PubMed ID: 36720653 [TBL] [Abstract][Full Text] [Related]
17. Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources. Zheng Y; Yuan Q; Luo H; Yang X; Ma H Bioengineered; 2018 Jan; 9(1):209-213. PubMed ID: 29685061 [TBL] [Abstract][Full Text] [Related]
18. Engineering Yarrowia lipolytica for poly-3-hydroxybutyrate production. Li ZJ; Qiao K; Liu N; Stephanopoulos G J Ind Microbiol Biotechnol; 2017 May; 44(4-5):605-612. PubMed ID: 27826725 [TBL] [Abstract][Full Text] [Related]
19. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply. Satowa D; Fujiwara R; Uchio S; Nakano M; Otomo C; Hirata Y; Matsumoto T; Noda S; Tanaka T; Kondo A Biotechnol Bioeng; 2020 Jul; 117(7):2153-2164. PubMed ID: 32255505 [TBL] [Abstract][Full Text] [Related]
20. Engineering the Outer Membrane Could Facilitate Better Bacterial Performance and Effectively Enhance Poly-3-Hydroxybutyrate Accumulation. Wang J; Ma W; Fang Y; Zhang H; Liang H; Liu H; Wang T; Chen S; Ji J; Wang X Appl Environ Microbiol; 2021 Nov; 87(23):e0138921. PubMed ID: 34550763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]