BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30102971)

  • 1. Engineering an in vivo EP-bifido pathway in Escherichia coli for high-yield acetyl-CoA generation with low CO
    Wang Q; Xu J; Sun Z; Luan Y; Li Y; Wang J; Liang Q; Qi Q
    Metab Eng; 2019 Jan; 51():79-87. PubMed ID: 30102971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli.
    Li Y; Xian H; Xu Y; Zhu Y; Sun Z; Wang Q; Qi Q
    Microb Cell Fact; 2021 Feb; 20(1):32. PubMed ID: 33531004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the Glucose Flux of an Engineered EP-Bifido Pathway for High Poly(Hydroxybutyrate) Yield Production.
    Li Y; Sun Z; Xu Y; Luan Y; Xu J; Liang Q; Qi Q; Wang Q
    Front Bioeng Biotechnol; 2020; 8():517336. PubMed ID: 32984296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of precise control of flux ratio between the glycolytic pathways on mevalonate production in Escherichia coli.
    Kamata K; Toya Y; Shimizu H
    Biotechnol Bioeng; 2019 May; 116(5):1080-1088. PubMed ID: 30636280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis.
    Zheng Y; Yuan Q; Yang X; Ma H
    Enzyme Microb Technol; 2017 Nov; 106():60-66. PubMed ID: 28859811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability.
    Centeno-Leija S; Huerta-Beristain G; Giles-Gómez M; Bolivar F; Gosset G; Martinez A
    Antonie Van Leeuwenhoek; 2014 Apr; 105(4):687-96. PubMed ID: 24500003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass.
    Lin Z; Zhang Y; Yuan Q; Liu Q; Li Y; Wang Z; Ma H; Chen T; Zhao X
    Microb Cell Fact; 2015 Nov; 14():185. PubMed ID: 26589676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli.
    van Wegen RJ; Lee SY; Middelberg AP
    Biotechnol Bioeng; 2001 Jul; 74(1):70-80. PubMed ID: 11353412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosensor-assisted transcriptional regulator engineering for Methylobacterium extorquens AM1 to improve mevalonate synthesis by increasing the acetyl-CoA supply.
    Liang WF; Cui LY; Cui JY; Yu KW; Yang S; Wang TM; Guan CG; Zhang C; Xing XH
    Metab Eng; 2017 Jan; 39():159-168. PubMed ID: 27919791
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Wada K; Toya Y; Banno S; Yoshikawa K; Matsuda F; Shimizu H
    J Biosci Bioeng; 2017 Feb; 123(2):177-182. PubMed ID: 27570223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli.
    Zhang S; Yang W; Chen H; Liu B; Lin B; Tao Y
    Microb Cell Fact; 2019 Aug; 18(1):130. PubMed ID: 31387584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway.
    Kocharin K; Siewers V; Nielsen J
    Biotechnol Bioeng; 2013 Aug; 110(8):2216-24. PubMed ID: 23456608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Truncating the Structure of Lipopolysaccharide in
    Wang J; Ma W; Fang Y; Zhang H; Liang H; Li Y; Wang X
    ACS Synth Biol; 2020 May; 9(5):1201-1215. PubMed ID: 32302096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli.
    Durante-Rodríguez G; de Lorenzo V; Nikel PI
    ACS Synth Biol; 2018 Nov; 7(11):2686-2697. PubMed ID: 30346720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional evaluation of non-oxidative glycolysis in Escherichia coli in the stationary phase under microaerobic conditions.
    Miyoshi K; Kawai R; Niide T; Toya Y; Shimizu H
    J Biosci Bioeng; 2023 Apr; 135(4):291-297. PubMed ID: 36720653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources.
    Zheng Y; Yuan Q; Luo H; Yang X; Ma H
    Bioengineered; 2018 Jan; 9(1):209-213. PubMed ID: 29685061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Yarrowia lipolytica for poly-3-hydroxybutyrate production.
    Li ZJ; Qiao K; Liu N; Stephanopoulos G
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):605-612. PubMed ID: 27826725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply.
    Satowa D; Fujiwara R; Uchio S; Nakano M; Otomo C; Hirata Y; Matsumoto T; Noda S; Tanaka T; Kondo A
    Biotechnol Bioeng; 2020 Jul; 117(7):2153-2164. PubMed ID: 32255505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the Outer Membrane Could Facilitate Better Bacterial Performance and Effectively Enhance Poly-3-Hydroxybutyrate Accumulation.
    Wang J; Ma W; Fang Y; Zhang H; Liang H; Liu H; Wang T; Chen S; Ji J; Wang X
    Appl Environ Microbiol; 2021 Nov; 87(23):e0138921. PubMed ID: 34550763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.