BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30103137)

  • 1. Does time since fire drive live aboveground biomass and stand structure in low fire activity boreal forests? Impacts on their management.
    Portier J; Gauthier S; Cyr G; Bergeron Y
    J Environ Manage; 2018 Nov; 225():346-355. PubMed ID: 30103137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China].
    Luo X; Wang YL; Zhang JQ
    Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):713-724. PubMed ID: 29722211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of climate change, fire and harvest on carbon storage of boreal forests in the Great Xing'an Mountains, China.].
    Huang C; He HS; Liang Y; Wu ZW
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2088-2100. PubMed ID: 30039645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest.
    Slik JW; Bernard CS; Van Beek M; Breman FC; Eichhorn KA
    Oecologia; 2008 Dec; 158(3):579-88. PubMed ID: 18839212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of climate change, fire and silvicultural management on ecological resilience of typical cold-temperate forests in China.].
    Luo X; Liang Y; He HS; Huang C; Zhang QL
    Ying Yong Sheng Tai Xue Bao; 2019 May; 30(5):1699-1712. PubMed ID: 31107027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga.
    Erni S; Arseneault D; Parisien MA; Bégin Y
    Glob Chang Biol; 2017 Mar; 23(3):1152-1166. PubMed ID: 27514018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Patterns of Soil Respiration Links Above and Belowground Processes along a Boreal Aspen Fire Chronosequence.
    Das Gupta S; Mackenzie MD
    PLoS One; 2016; 11(11):e0165602. PubMed ID: 27832089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 249-yr chronosequence of forest plots from eight successive fires in the Eastern Canada boreal mixedwoods.
    Maleki K; Marchand P; Charron D; Lafleur B; Bergeron Y
    Ecology; 2021 May; 102(5):e03306. PubMed ID: 33576052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.
    Miquelajauregui Y; Cumming SG; Gauthier S
    PLoS One; 2016; 11(2):e0150073. PubMed ID: 26919456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences of long-term severe industrial pollution for aboveground carbon and nitrogen pools in northern taiga forests at local and regional scales.
    Manninen S; Zverev V; Bergman I; Kozlov MV
    Sci Total Environ; 2015 Dec; 536():616-624. PubMed ID: 26254064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest.
    Boby LA; Schuur EA; Mack MC; Verbyla D; Johnstone JF
    Ecol Appl; 2010 Sep; 20(6):1633-47. PubMed ID: 20945764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salvage logging following fires can minimize boreal caribou habitat loss while maintaining forest quotas: An example of compensatory cumulative effects.
    Beguin J; McIntire EJ; Raulier F
    J Environ Manage; 2015 Nov; 163():234-45. PubMed ID: 26321533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.
    Tautenhahn S; Lichstein JW; Jung M; Kattge J; Bohlman SA; Heilmeier H; Prokushkin A; Kahl A; Wirth C
    Glob Chang Biol; 2016 Jun; 22(6):2178-97. PubMed ID: 26649652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traditional fire use impact in the aboveground carbon stock of the chestnut forests of Central Spain and its implications for prescribed burning.
    Seijo F; Cespedes B; Zavala G
    Sci Total Environ; 2018 Jun; 625():1405-1414. PubMed ID: 29996437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disturbance-mediated heterogeneity drives pollinator diversity in boreal managed forest ecosystems.
    Rodríguez A; Kouki J
    Ecol Appl; 2017 Mar; 27(2):589-602. PubMed ID: 27862547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term structural and biomass dynamics of virgin Tsuga canadensis-Pinus strobus forests after hurricane disturbance.
    D'Amato AW; Orwig DA; Foster DR; Barker Plotkin A; Schoonmaker PK; Wagner MR
    Ecology; 2017 Mar; 98(3):721-733. PubMed ID: 27984662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost.
    Köster E; Köster K; Berninger F; Prokushkin A; Aaltonen H; Zhou X; Pumpanen J
    J Environ Manage; 2018 Dec; 228():405-415. PubMed ID: 30243076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fire catalyzed rapid ecological change in lowland coniferous forests of the Pacific Northwest over the past 14,000 years.
    Crausbay SD; Higuera PE; Sprugel DG; Brubaker LB
    Ecology; 2017 Sep; 98(9):2356-2369. PubMed ID: 28500791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disturbance and productivity interactions mediate stability of forest composition and structure.
    O'Connor CD; Falk DA; Lynch AM; Swetnam TW; Wilcox CP
    Ecol Appl; 2017 Apr; 27(3):900-915. PubMed ID: 28029193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.