These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30103142)

  • 41. Reduction of bromate from drinking water by sulfite/ferric ion systems: Efficacy and mechanisms.
    Xiao Q; Yu S
    J Hazard Mater; 2021 Sep; 418():125940. PubMed ID: 34111754
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective photocatalytic reduction of selenate over TiO
    Holmes AB; Ngan A; Ye J; Gu F
    Chemosphere; 2022 Jan; 287(Pt 1):131951. PubMed ID: 34455127
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of magnetic porous Fe-Mn binary oxide nanowires with superior capability for removal of As(III) from water.
    Cui HJ; Cai JK; Zhao H; Yuan B; Ai CL; Fu ML
    J Hazard Mater; 2014 Aug; 279():26-31. PubMed ID: 25036997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe (III) (hydr)oxides.
    Zhengji Y
    J Environ Radioact; 2010 Sep; 101(9):700-5. PubMed ID: 20471727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of arsenic removal efficiency by ferric ions using response surface methodology.
    Baskan MB; Pala A
    J Hazard Mater; 2009 Jul; 166(2-3):796-801. PubMed ID: 19147281
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles.
    Shan C; Ma Z; Tong M
    J Hazard Mater; 2014 Mar; 268():229-36. PubMed ID: 24509094
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel photo-sulfite system: toward simultaneous transformations of inorganic and organic pollutants.
    Guo Y; Lou X; Fang C; Xiao D; Wang Z; Liu J
    Environ Sci Technol; 2013 Oct; 47(19):11174-81. PubMed ID: 24015851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced degradation of organic contaminants by zero-valent iron/sulfite process under simulated sunlight irradiation.
    Xie P; Zhang L; Chen J; Ding J; Wan Y; Wang S; Wang Z; Zhou A; Ma J
    Water Res; 2019 Feb; 149():169-178. PubMed ID: 30439580
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Performance of integrated ferrate-polyaluminum chloride coagulation as a treatment technology for removing freshwater humic substances.
    Amano M; Lohwacharin J; Dubechot A; Takizawa S
    J Environ Manage; 2018 Apr; 212():323-331. PubMed ID: 29453117
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC; Xu H; Sahai N
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid degradation of dimethoate and simultaneous removal of total phosphorus by acid-activated Fe(VI) under simulated sunlight.
    Lu J; Cui Z; Deng X; Liang Z; Chai S; Fan J; Zhang Z; Zhao Z
    Chemosphere; 2020 Nov; 258():127265. PubMed ID: 32540534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of organic matter on arsenic removal during coagulation/flocculation treatment.
    Pallier V; Feuillade-Cathalifaud G; Serpaud B; Bollinger JC
    J Colloid Interface Sci; 2010 Feb; 342(1):26-32. PubMed ID: 19906383
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly efficient removal of phosphonates from water by a combined Fe(III)/UV/co-precipitation process.
    Sun S; Wang S; Ye Y; Pan B
    Water Res; 2019 Apr; 153():21-28. PubMed ID: 30685633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products.
    Feng M; Wang X; Chen J; Qu R; Sui Y; Cizmas L; Wang Z; Sharma VK
    Water Res; 2016 Oct; 103():48-57. PubMed ID: 27429354
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spectroscopic study of Se(IV) removal from water by reductive precipitation using sulfide.
    Jung B; Safan A; Batchelor B; Abdel-Wahab A
    Chemosphere; 2016 Nov; 163():351-358. PubMed ID: 27552695
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Treatment of Cr( VI) in deoxygenated simulated groundwater using nanoscale zero-valent iron].
    Wu J; Tian XJ; Wang J; Jing CY
    Huan Jing Ke Xue; 2010 Mar; 31(3):645-52. PubMed ID: 20358821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes.
    Plattes M; Bertrand A; Schmitt B; Sinner J; Verstraeten F; Welfring J
    J Hazard Mater; 2007 Sep; 148(3):613-5. PubMed ID: 17420093
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced degradation of tetrabromobisphenol A by Fe
    Wang Z; Cao L; Wan Y; Wang J; Bai F; Xie P
    Chemosphere; 2021 Dec; 285():131442. PubMed ID: 34256205
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of nitrate and Fe/As molar ratio on direct iron(III)-arsenite precipitation in high-sulfate-chloride wastewaters.
    Yuan Z; Zhao X; Yang L; Wang S; Lin J; Jia Y
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):40230-40241. PubMed ID: 36607569
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Comparison study of enhanced coagulation on humic acid and fulvic acid removal].
    Zhou LL; Zhang YJ; Ye HX; Zhang YQ
    Huan Jing Ke Xue; 2012 Aug; 33(8):2680-4. PubMed ID: 23213890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.