These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
723 related articles for article (PubMed ID: 30103198)
1. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility. Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198 [TBL] [Abstract][Full Text] [Related]
2. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466 [TBL] [Abstract][Full Text] [Related]
3. Second life batteries lifespan: Rest of useful life and environmental analysis. Casals LC; Amante García B; Canal C J Environ Manage; 2019 Feb; 232():354-363. PubMed ID: 30496965 [TBL] [Abstract][Full Text] [Related]
4. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress. Xiang Y; Li J; Lei J; Liu D; Xie Z; Qu D; Li K; Deng T; Tang H ChemSusChem; 2016 Nov; 9(21):3023-3039. PubMed ID: 27667306 [TBL] [Abstract][Full Text] [Related]
5. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
6. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment. Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328 [TBL] [Abstract][Full Text] [Related]
7. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis. Kim HC; Wallington TJ; Arsenault R; Bae C; Ahn S; Lee J Environ Sci Technol; 2016 Jul; 50(14):7715-22. PubMed ID: 27303957 [TBL] [Abstract][Full Text] [Related]
8. Nanoengineering to achieve high efficiency practical lithium-sulfur batteries. Cha E; Patel M; Bhoyate S; Prasad V; Choi W Nanoscale Horiz; 2020 May; 5(5):808-831. PubMed ID: 32159194 [TBL] [Abstract][Full Text] [Related]
9. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries. Xia X; Li P Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672 [TBL] [Abstract][Full Text] [Related]
10. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing]. Shi XQ; Sun ZX; Li XN; Li JX; Yang JX Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083 [TBL] [Abstract][Full Text] [Related]
11. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Xiong S; Ji J; Ma X Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692 [TBL] [Abstract][Full Text] [Related]
12. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value. Cui J; Tan Q; Liu L; Li J Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409 [TBL] [Abstract][Full Text] [Related]
13. Crushing of large Li-ion battery cells. Wuschke L; Jäckel HG; Leißner T; Peuker UA Waste Manag; 2019 Feb; 85():317-326. PubMed ID: 30803586 [TBL] [Abstract][Full Text] [Related]
14. The Regulating Role of Carbon Nanotubes and Graphene in Lithium-Ion and Lithium-Sulfur Batteries. Fang R; Chen K; Yin L; Sun Z; Li F; Cheng HM Adv Mater; 2019 Mar; 31(9):e1800863. PubMed ID: 29984484 [TBL] [Abstract][Full Text] [Related]
15. New Horizons for Conventional Lithium Ion Battery Technology. Erickson EM; Ghanty C; Aurbach D J Phys Chem Lett; 2014 Oct; 5(19):3313-24. PubMed ID: 26278438 [TBL] [Abstract][Full Text] [Related]
16. Challenges Considering the Degradation of Cell Components in Commercial Lithium-Ion Cells: A Review and Evaluation of Present Systems. Kleiner K; Ehrenberg H Top Curr Chem (Cham); 2017 Jun; 375(3):54. PubMed ID: 28470590 [TBL] [Abstract][Full Text] [Related]
17. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183 [TBL] [Abstract][Full Text] [Related]
18. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
19. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Li B; Gao X; Li J; Yuan C Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341 [TBL] [Abstract][Full Text] [Related]
20. More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects. Fang R; Zhao S; Sun Z; Wang DW; Cheng HM; Li F Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28380284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]