These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 30103198)

  • 61. A Low-Cost Hardware Architecture for EV Battery Cell Characterization Using an IoT-Based Platform.
    Martínez-Sánchez R; Molina-García Á; Ramallo-González AP; Sánchez-Valverde J; Úbeda-Miñarro B
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679611
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges.
    Noudeng V; Quan NV; Xuan TD
    Int J Environ Res Public Health; 2022 Dec; 19(23):. PubMed ID: 36498242
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Design and On-Field Validation of an Embedded System for Monitoring Second-Life Electric Vehicle Lithium-Ion Batteries.
    Castillo-Martínez DH; Rodríguez-Rodríguez AJ; Soto A; Berrueta A; Vargas-Requena DT; Matias IR; Sanchis P; Ursúa A; Rodríguez-Rodríguez WE
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080844
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.
    Song K; Agyeman DA; Park M; Yang J; Kang YM
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28940885
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Are electric vehicle batteries being underused? A review of current practices and sources of circularity.
    Etxandi-Santolaya M; Canals Casals L; Montes T; Corchero C
    J Environ Manage; 2023 Jul; 338():117814. PubMed ID: 36996558
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Toward sustainable and systematic recycling of spent rechargeable batteries.
    Zhang X; Li L; Fan E; Xue Q; Bian Y; Wu F; Chen R
    Chem Soc Rev; 2018 Oct; 47(19):7239-7302. PubMed ID: 30124695
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Adsorption and diffusion of lithium on layered silicon for Li-ion storage.
    Tritsaris GA; Kaxiras E; Meng S; Wang E
    Nano Lett; 2013 May; 13(5):2258-63. PubMed ID: 23611247
    [TBL] [Abstract][Full Text] [Related]  

  • 70. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.
    Nayak PK; Yang L; Brehm W; Adelhelm P
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):102-120. PubMed ID: 28627780
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Lithium oxides precipitation in nonaqueous Li-air batteries.
    Hou J; Yang M; Ellis MW; Moore RB; Yi B
    Phys Chem Chem Phys; 2012 Oct; 14(39):13487-501. PubMed ID: 22968061
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nano active materials for lithium-ion batteries.
    Wang Y; Li H; He P; Hosono E; Zhou H
    Nanoscale; 2010 Aug; 2(8):1294-305. PubMed ID: 20820717
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes.
    Croy JR; Balasubramanian M; Gallagher KG; Burrell AK
    Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Blueprint and Implementation of Rural Stand-Alone Power Grids with Second-Life Lithium Ion Vehicle Traction Battery Systems for Resilient Energy Supply of Tropical or Remote Regions.
    Nedjalkov A; Meyer J; Göken H; Reimer MV; Schade W
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31434202
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li
    Wang X; Bi X; Wang S; Zhang Y; Du H; Lu J
    ACS Appl Mater Interfaces; 2018 May; 10(19):16552-16560. PubMed ID: 29671567
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hierarchically structured materials for lithium batteries.
    Xiao J; Zheng J; Li X; Shao Y; Zhang JG
    Nanotechnology; 2013 Oct; 24(42):424004. PubMed ID: 24067410
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection.
    Xu WT; Peng HJ; Huang JQ; Zhao CZ; Cheng XB; Zhang Q
    ChemSusChem; 2015 Sep; 8(17):2892-901. PubMed ID: 26079671
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nitrogen-Doped Mesoporous Carbon: A Top-Down Strategy to Promote Sulfur Immobilization for Lithium-Sulfur Batteries.
    Zhao X; Liu Y; Manuel J; Chauhan GS; Ahn HJ; Kim KW; Cho KK; Ahn JH
    ChemSusChem; 2015 Oct; 8(19):3234-41. PubMed ID: 26336933
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test.
    Okamoto E; Watanabe K; Hashiba K; Inoue T; Iwazawa E; Momoi M; Hashimoto T; Mitamura Y
    ASAIO J; 2002; 48(5):495-502. PubMed ID: 12296569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.