These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 30103473)
21. Development of an FgMito assay: A highly sensitive mitochondrial based qPCR assay for quantification of Fusarium graminearum sensu stricto. Kulik T; Ostrowska A; Buśko M; Pasquali M; Beyer M; Stenglein S; Załuski D; Sawicki J; Treder K; Perkowski J Int J Food Microbiol; 2015 Oct; 210():16-23. PubMed ID: 26087129 [TBL] [Abstract][Full Text] [Related]
22. Geographic distribution of phylogenetic species of the Fusarium graminearum species complex and their 8-ketotrichothecene chemotypes on wheat spikes in Iran. Abedi-Tizaki M; Zafari D Mycotoxin Res; 2017 Aug; 33(3):245-259. PubMed ID: 28612272 [TBL] [Abstract][Full Text] [Related]
23. The Distribution of Xu F; Liu W; Song Y; Zhou Y; Xu X; Yang G; Wang J; Zhang J; Liu L Plant Dis; 2021 Oct; 105(10):2830-2835. PubMed ID: 33881919 [TBL] [Abstract][Full Text] [Related]
24. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Gale LR; Harrison SA; Ward TJ; O'Donnell K; Milus EA; Gale SW; Kistler HC Phytopathology; 2011 Jan; 101(1):124-34. PubMed ID: 20822434 [TBL] [Abstract][Full Text] [Related]
25. Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in southern Brazil. Astolfi P; dos Santos J; Schneider L; Gomes LB; Silva CN; Tessmann DJ; Del Ponte EM Int J Food Microbiol; 2011 Aug; 148(3):197-201. PubMed ID: 21665312 [TBL] [Abstract][Full Text] [Related]
26. The prevalence of selected genes involved in the biosynthesis of trichothecenes assessed with the specific PCR tests in Fusarium spp. isolated from cereals in southern Poland. Wolny-Koładka KA J Environ Sci Health B; 2015; 50(5):361-7. PubMed ID: 25826104 [TBL] [Abstract][Full Text] [Related]
28. Trichothecene Genotype Composition of Fusarium graminearum Not Differentiated Among Isolates from Maize Stubble, Maize Ears, Wheat Spikes, and the Atmosphere in New York. Kuhnem PR; Spolti P; Del Ponte EM; Cummings JA; Bergstrom GC Phytopathology; 2015 May; 105(5):695-9. PubMed ID: 25651052 [TBL] [Abstract][Full Text] [Related]
29. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Pasquali M; Giraud F; Brochot C; Cocco E; Hoffmann L; Bohn T Int J Food Microbiol; 2010 Feb; 137(2-3):246-53. PubMed ID: 20004994 [TBL] [Abstract][Full Text] [Related]
30. Genetic diversity in Fusarium graminearum from a major wheat-producing region of Argentina. Alvarez CL; Somma S; Proctor RH; Stea G; Mulè G; Logrieco AF; Pinto VF; Moretti A Toxins (Basel); 2011 Oct; 3(10):1294-309. PubMed ID: 22069697 [TBL] [Abstract][Full Text] [Related]
31. Within-field variation of Fusarium graminearum isolates for aggressiveness and deoxynivalenol production in wheat head blight. Talas F; Kalih R; Miedaner T Phytopathology; 2012 Jan; 102(1):128-34. PubMed ID: 22165985 [TBL] [Abstract][Full Text] [Related]
32. Effect of environmental factors on Fusarium population and associated trichothecenes in wheat grain grown in Jiangsu province, China. Dong F; Qiu J; Xu J; Yu M; Wang S; Sun Y; Zhang G; Shi J Int J Food Microbiol; 2016 Aug; 230():58-63. PubMed ID: 27127840 [TBL] [Abstract][Full Text] [Related]
33. RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta. Puri KD; Yan C; Leng Y; Zhong S PLoS One; 2016; 11(10):e0163803. PubMed ID: 27788144 [TBL] [Abstract][Full Text] [Related]
34. Identification and trichothecene genotypes of Fusarium graminearum species complex from wheat in Taiwan. Wang CL; Cheng YH Bot Stud; 2017 Dec; 58(1):4. PubMed ID: 28510187 [TBL] [Abstract][Full Text] [Related]
35. 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression. Etzerodt T; Maeda K; Nakajima Y; Laursen B; Fomsgaard IS; Kimura M Int J Food Microbiol; 2015 Dec; 214():123-128. PubMed ID: 26276561 [TBL] [Abstract][Full Text] [Related]
36. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. O'Donnell K; Ward TJ; Aberra D; Kistler HC; Aoki T; Orwig N; Kimura M; Bjørnstad S; Klemsdal SS Fungal Genet Biol; 2008 Nov; 45(11):1514-22. PubMed ID: 18824240 [TBL] [Abstract][Full Text] [Related]
37. The distribution and type B trichothecene chemotype of Fusarium species associated with head blight of wheat in South Africa during 2008 and 2009. Van Coller GJ; Rose LJ; Boutigny AL; Ward TJ; Lamprecht SC; Viljoen A PLoS One; 2022; 17(9):e0275084. PubMed ID: 36156602 [TBL] [Abstract][Full Text] [Related]
38. Simultaneous quantitation of 3ADON and 15ADON chemotypes of DON-producing Fusarium species in Chinese wheat based on duplex droplet digital PCR assay. Wang SS; Cui H; Chen MZ; Li L; Wu Y; Wang SX J Microbiol Methods; 2021 Nov; 190():106319. PubMed ID: 34480973 [TBL] [Abstract][Full Text] [Related]
39. Levels of fungi and mycotoxins in samples of grain and grain dust collected on farms in Eastern Poland. Krysińska-Traczyk E; Kiecana I; Perkowski J; Dutkiewicz J Ann Agric Environ Med; 2001; 8(2):269-74. PubMed ID: 11748887 [TBL] [Abstract][Full Text] [Related]
40. Toxigenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike. Malbrán I; Mourelos CA; Girotti JR; Balatti PA; Lori GA Phytopathology; 2014 Apr; 104(4):357-64. PubMed ID: 24168045 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]