These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30104258)

  • 41. Biomolecular condensation involving the cytoskeleton.
    Mohapatra S; Wegmann S
    Brain Res Bull; 2023 Mar; 194():105-117. PubMed ID: 36690162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks.
    Lappalainen P
    Mol Biol Cell; 2016 Aug; 27(16):2519-22. PubMed ID: 27528696
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stress relaxation in F-actin solutions by severing.
    Arzash S; McCall PM; Feng J; Gardel ML; MacKintosh FC
    Soft Matter; 2019 Aug; 15(31):6300-6307. PubMed ID: 31342050
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions.
    Schaedel L; Lorenz C; Schepers AV; Klumpp S; Köster S
    Nat Commun; 2021 Jun; 12(1):3799. PubMed ID: 34145230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In situ cryo-electron tomography reveals filamentous actin within the microtubule lumen.
    Paul DM; Mantell J; Borucu U; Coombs J; Surridge KJ; Squire JM; Verkade P; Dodding MP
    J Cell Biol; 2020 Sep; 219(9):. PubMed ID: 32478855
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A model for actin polymerization and the kinetic effects of ATP hydrolysis.
    Pantaloni D; Hill TL; Carlier MF; Korn ED
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7207-11. PubMed ID: 3864156
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reorganization and translocation of the ectoplasmic cytoskeleton in the leech zygote by condensation of cytasters and interactions of dynamic microtubules and actin filaments.
    Fernández J; Cantillana V; Ubilla A
    Cell Motil Cytoskeleton; 2002 Nov; 53(3):214-30. PubMed ID: 12211103
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The interaction of Mip-90 with microtubules and actin filaments in human fibroblasts.
    González M; Cambiazo V; Maccioni RB
    Exp Cell Res; 1998 Mar; 239(2):243-53. PubMed ID: 9521842
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioenergetic aspects and polymer length distribution in steady-state head-to-tail polymerization of actin or microtubules.
    Hill TL
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4803-7. PubMed ID: 6933529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From qualitative data to correlation using deep generative networks: Demonstrating the relation of nuclear position with the arrangement of actin filaments.
    Vasudevan J; Zheng C; Wan JG; Cham TJ; Teck LC; Fernandez JG
    PLoS One; 2022; 17(7):e0271056. PubMed ID: 35905093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM.
    Fäßler F; Javoor MG; Schur FK
    Biochem Soc Trans; 2023 Feb; 51(1):87-99. PubMed ID: 36695514
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compressive and Tensile Deformations Alter ATP Hydrolysis and Phosphate Release Rates in Actin Filaments.
    Mani S; Katkar HH; Voth GA
    J Chem Theory Comput; 2021 Mar; 17(3):1900-1913. PubMed ID: 33596075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Apparent stiffness of vimentin intermediate filaments in living cells and its relation with other cytoskeletal polymers.
    Smoler M; Coceano G; Testa I; Bruno L; Levi V
    Biochim Biophys Acta Mol Cell Res; 2020 Aug; 1867(8):118726. PubMed ID: 32320724
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular mechanism for direct actin force-sensing by α-catenin.
    Mei L; Espinosa de Los Reyes S; Reynolds MJ; Leicher R; Liu S; Alushin GM
    Elife; 2020 Sep; 9():. PubMed ID: 32969337
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tropomyosin stabilizes the pointed end of actin filaments by slowing depolymerization.
    Broschat KO; Weber A; Burgess DR
    Biochemistry; 1989 Oct; 28(21):8501-6. PubMed ID: 2605200
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-linkers at growing microtubule ends generate forces that drive actin transport.
    Alkemade C; Wierenga H; Volkov VA; Preciado López M; Akhmanova A; Ten Wolde PR; Dogterom M; Koenderink GH
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2112799119. PubMed ID: 35271394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Directed cytoskeleton self-organization.
    Vignaud T; Blanchoin L; Théry M
    Trends Cell Biol; 2012 Dec; 22(12):671-82. PubMed ID: 23026031
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How profilin/barbed-end synergy controls actin polymerization: a kinetic model of the ATP hydrolysis circuit.
    Dufort PA; Lumsden CJ
    Cell Motil Cytoskeleton; 1996; 35(4):309-30. PubMed ID: 8956003
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Actin filaments play a permissive role in the inhibition of store-operated Ca2+ entry by extracellular ATP in rat brown adipocytes.
    Omatsu-Kanbe M; Shibata M; Yamamoto T; Isono T; Matsuura H
    Biochem J; 2004 Jul; 381(Pt 2):389-96. PubMed ID: 15107014
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Joining actions: crosstalk between intermediate filaments and actin orchestrates cellular physical dynamics and signaling.
    Li J; Zou Y; Li Z; Jiu Y
    Sci China Life Sci; 2019 Oct; 62(10):1368-1374. PubMed ID: 31098891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.