These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 30104345)
1. Spectroscopic ruler for measuring active-site distortions based on Raman optical activity of a hydrogen out-of-plane vibration. Haraguchi S; Shingae T; Fujisawa T; Kasai N; Kumauchi M; Hanamoto T; Hoff WD; Unno M Proc Natl Acad Sci U S A; 2018 Aug; 115(35):8671-8675. PubMed ID: 30104345 [TBL] [Abstract][Full Text] [Related]
2. Resonance Raman spectroscopy and quantum chemical calculations reveal structural changes in the active site of photoactive yellow protein. Unno M; Kumauchi M; Sasaki J; Tokunaga F; Yamauchi S Biochemistry; 2002 Apr; 41(17):5668-74. PubMed ID: 11969428 [TBL] [Abstract][Full Text] [Related]
3. Vibrational assignment of the 4-hydroxycinnamyl chromophore in photoactive yellow protein. Unno M; Kumauchi M; Tokunaga F; Yamauchi S J Phys Chem B; 2007 Mar; 111(10):2719-26. PubMed ID: 17311445 [TBL] [Abstract][Full Text] [Related]
4. Structural evolution of the chromophore in the primary stages of trans/cis isomerization in photoactive yellow protein. Heyne K; Mohammed OF; Usman A; Dreyer J; Nibbering ET; Cusanovich MA J Am Chem Soc; 2005 Dec; 127(51):18100-6. PubMed ID: 16366562 [TBL] [Abstract][Full Text] [Related]
5. Photoinduced isomerization of the photoactive yellow protein (PYP) chromophore: interplay of two torsions, a HOOP mode and hydrogen bonding. Gromov EV; Burghardt I; Köppel H; Cederbaum LS J Phys Chem A; 2011 Aug; 115(33):9237-48. PubMed ID: 21744877 [TBL] [Abstract][Full Text] [Related]
6. Stress tensor analysis of the protein quake of photoactive yellow protein. Koike K; Kawaguchi K; Yamato T Phys Chem Chem Phys; 2008 Mar; 10(10):1400-5. PubMed ID: 18309395 [TBL] [Abstract][Full Text] [Related]
7. Resonance Raman evidence for two conformations involved in the L intermediate of photoactive yellow protein. Unno M; Kumauchi M; Hamada N; Tokunaga F; Yamauchi S J Biol Chem; 2004 Jun; 279(23):23855-8. PubMed ID: 15096497 [TBL] [Abstract][Full Text] [Related]
8. Communication maps of vibrational energy transport through Photoactive Yellow Protein. Xu Y; Leitner DM J Phys Chem A; 2014 Sep; 118(35):7280-7. PubMed ID: 24552496 [TBL] [Abstract][Full Text] [Related]
9. Chromophore dynamics in the PYP photocycle from femtosecond stimulated Raman spectroscopy. Creelman M; Kumauchi M; Hoff WD; Mathies RA J Phys Chem B; 2014 Jan; 118(3):659-67. PubMed ID: 24451027 [TBL] [Abstract][Full Text] [Related]
10. Visible-light-induced photodimerization of a photoactive yellow protein (PYP) chromophore model in a single crystal. Nath NK; Manoj K; Gâz AŞ; Naumov P Chemistry; 2013 Jun; 19(25):8094-9. PubMed ID: 23616177 [TBL] [Abstract][Full Text] [Related]
11. H atom positions and nuclear magnetic resonance chemical shifts of short H bonds in photoactive yellow protein. Saito K; Ishikita H Biochemistry; 2012 Feb; 51(6):1171-7. PubMed ID: 22263543 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen-bond network probed by time-resolved optoacoustic spectroscopy: photoactive yellow protein and the effect of E46Q and E46A mutations. Losi A; Gensch T; van der Horst MA; Hellingwerf KJ; Braslavsky SE Phys Chem Chem Phys; 2005 May; 7(10):2229-36. PubMed ID: 19791418 [TBL] [Abstract][Full Text] [Related]
13. A Dynamic Equilibrium of Three Hydrogen-Bond Conformers Explains the NMR Spectrum of the Active Site of Photoactive Yellow Protein. Taenzler PJ; Sadeghian K; Ochsenfeld C J Chem Theory Comput; 2016 Oct; 12(10):5170-5178. PubMed ID: 27627617 [TBL] [Abstract][Full Text] [Related]
14. Anharmonic vibrational calculations modeling the raman spectra of intermediates in the photoactive yellow protein (PYP) photocycle. Adesokan AA; Pan D; Fredj E; Mathies RA; Gerber RB J Am Chem Soc; 2007 Apr; 129(15):4584-94. PubMed ID: 17378558 [TBL] [Abstract][Full Text] [Related]
15. Unraveling the similarity of the photoabsorption of deprotonated p-coumaric acid in the gas phase and within the photoactive yellow protein. Rocha-Rinza T; Sneskov K; Christiansen O; Ryde U; Kongsted J Phys Chem Chem Phys; 2011 Jan; 13(4):1585-9. PubMed ID: 21132197 [TBL] [Abstract][Full Text] [Related]
16. Ultrafast infrared spectroscopy reveals a key step for successful entry into the photocycle for photoactive yellow protein. van Wilderen LJ; van der Horst MA; van Stokkum IH; Hellingwerf KJ; van Grondelle R; Groot ML Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15050-5. PubMed ID: 17015839 [TBL] [Abstract][Full Text] [Related]
17. Excitation-Wavelength-Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila. Mix LT; Carroll EC; Morozov D; Pan J; Gordon WR; Philip A; Fuzell J; Kumauchi M; van Stokkum I; Groenhof G; Hoff WD; Larsen DS Biochemistry; 2018 Mar; 57(11):1733-1747. PubMed ID: 29465990 [TBL] [Abstract][Full Text] [Related]
18. Proline 68 enhances photoisomerization yield in photoactive yellow protein. Rupenyan AB; Vreede J; van Stokkum IH; Hospes M; Kennis JT; Hellingwerf KJ; Groot ML J Phys Chem B; 2011 May; 115(20):6668-77. PubMed ID: 21542640 [TBL] [Abstract][Full Text] [Related]
19. Neutron and X-ray structural studies of short hydrogen bonds in photoactive yellow protein (PYP). Fisher SZ; Anderson S; Henning R; Moffat K; Langan P; Thiyagarajan P; Schultz AJ Acta Crystallogr D Biol Crystallogr; 2007 Nov; 63(Pt 11):1178-84. PubMed ID: 18007033 [TBL] [Abstract][Full Text] [Related]
20. Functional tuning of photoactive yellow protein by active site residue 46. Philip AF; Eisenman KT; Papadantonakis GA; Hoff WD Biochemistry; 2008 Dec; 47(52):13800-10. PubMed ID: 19102703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]