These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30104359)

  • 1. Proteomic analysis of monolayer-integrated proteins on lipid droplets identifies amphipathic interfacial α-helical membrane anchors.
    Pataki CI; Rodrigues J; Zhang L; Qian J; Efron B; Hastie T; Elias JE; Levitt M; Kopito RR
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):E8172-E8180. PubMed ID: 30104359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of a model apolipoprotein, apoLp-III, with an oil-phospholipid interface.
    Mirheydari M; Mann EK; Kooijman EE
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):396-406. PubMed ID: 29030246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers.
    Calvez P; Bussières S; Eric Demers ; Salesse C
    Biochimie; 2009 Jun; 91(6):718-33. PubMed ID: 19345719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triacylglycerols sequester monotopic membrane proteins to lipid droplets.
    Caillon L; Nieto V; Gehan P; Omrane M; Rodriguez N; Monticelli L; Thiam AR
    Nat Commun; 2020 Aug; 11(1):3944. PubMed ID: 32769983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid Droplets Embedded in a Model Cell Membrane Create a Phospholipid Diffusion Barrier.
    Puza S; Caesar S; Poojari C; Jung M; Seemann R; Hub JS; Schrul B; Fleury JB
    Small; 2022 Mar; 18(12):e2106524. PubMed ID: 35072348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters.
    Bansal A; Sankararamakrishnan R
    BMC Struct Biol; 2007 Apr; 7():27. PubMed ID: 17445256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism and Determinants of Amphipathic Helix-Containing Protein Targeting to Lipid Droplets.
    Prévost C; Sharp ME; Kory N; Lin Q; Voth GA; Farese RV; Walther TC
    Dev Cell; 2018 Jan; 44(1):73-86.e4. PubMed ID: 29316443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid structure in triolein lipid droplets.
    Chaban VV; Khandelia H
    J Phys Chem B; 2014 Sep; 118(35):10335-40. PubMed ID: 25133683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides.
    Epand RM; Shai Y; Segrest JP; Anantharamaiah GM
    Biopolymers; 1995; 37(5):319-38. PubMed ID: 7632881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor.
    Miller AS; Falke JJ
    Biochemistry; 2004 Feb; 43(7):1763-70. PubMed ID: 14967017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.
    Shelar A; Bansal M
    Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The C-Terminus of Perilipin 3 Shows Distinct Lipid Binding at Phospholipid-Oil-Aqueous Interfaces.
    Titus AR; Ridgway EN; Douglas R; Brenes ES; Mann EK; Kooijman EE
    Membranes (Basel); 2021 Apr; 11(4):. PubMed ID: 33917451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the key determinants of membrane protein topology enable the identification of new monotopic folds.
    Entova S; Billod JM; Swiecicki JM; Martín-Santamaría S; Imperiali B
    Elife; 2018 Aug; 7():. PubMed ID: 30168796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Juxta-terminal Helix Unwinding as a Stabilizing Factor to Modulate the Dynamics of Transmembrane Helices.
    Mortazavi A; Rajagopalan V; Sparks KA; Greathouse DV; Koeppe RE
    Chembiochem; 2016 Mar; 17(6):462-5. PubMed ID: 26749271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic Analysis Identifies Membrane Proteins Dependent on the ER Membrane Protein Complex.
    Tian S; Wu Q; Zhou B; Choi MY; Ding B; Yang W; Dong M
    Cell Rep; 2019 Sep; 28(10):2517-2526.e5. PubMed ID: 31484065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Many Faces of Amphipathic Helices.
    Giménez-Andrés M; Čopič A; Antonny B
    Biomolecules; 2018 Jul; 8(3):. PubMed ID: 29976879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier.
    Sapay N; Guermeur Y; Deléage G
    BMC Bioinformatics; 2006 May; 7():255. PubMed ID: 16704727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the amphipathic nature and tilted topology of helices 4 and 5 in the closed state of the colicin E1 channel.
    Ho D; Merrill AR
    Biochemistry; 2009 Feb; 48(6):1369-80. PubMed ID: 19159330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane helices can induce domain formation in crowded model membranes.
    Domański J; Marrink SJ; Schäfer LV
    Biochim Biophys Acta; 2012 Apr; 1818(4):984-94. PubMed ID: 21884678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helix perturbations in membrane proteins assist in inter-helical interactions and optimal helix positioning in the bilayer.
    Shelar A; Bansal M
    Biochim Biophys Acta; 2016 Nov; 1858(11):2804-2817. PubMed ID: 27521749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.