These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30104513)

  • 1. A Non-Contact Measuring System for In-Situ Surface Characterization Based on Laser Confocal Microscopy.
    Fu S; Cheng F; Tjahjowidodo T; Zhou Y; Butler D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30104513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective metrology and standard of the surface roughness of micro/nanoscale waveguides with confocal laser scanning microscopy.
    Sun D; Shang H; Jiang H
    Opt Lett; 2019 Feb; 44(4):747-750. PubMed ID: 30767977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Backscattering Characteristics of Machining Surfaces and Retrieval of Surface Multi-Parameters].
    Tao HR; Zhang FM; Qu XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1986-91. PubMed ID: 26717764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid in-process measurement of surface roughness using adaptive optics.
    Fuh YK; Hsu KC; Fan JR
    Opt Lett; 2012 Mar; 37(5):848-50. PubMed ID: 22378414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-assisted measuring method for periodical sub-wavelength nanostructures.
    Alexe G; Tausendfreund A; Stöbener D; Fischer A
    Appl Opt; 2018 Jan; 57(1):92-101. PubMed ID: 29328122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards the development of a hybrid-integrated chip interferometer for online surface profile measurements.
    Kumar P; Martin H; Jiang X
    Rev Sci Instrum; 2016 Jun; 87(6):065103. PubMed ID: 27370493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-D profilometer using a CCD linear image sensor: application to skin surface topography measurement.
    Nita D; Mignot J; Chuard M; Sofa M
    Skin Res Technol; 1998 Aug; 4(3):121-9. PubMed ID: 27328905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Results of a Surface Roughness Comparison between Stylus Instruments and Confocal Microscopes.
    Mínguez-Martínez A; Maresca P; Caja J; Oliva JVY
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a laser-scattering-based probe for on-line measurement of surface roughness.
    Wang S; Tian Y; Tay CJ; Quan C
    Appl Opt; 2003 Mar; 42(7):1318-24. PubMed ID: 12638888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Wavelet Packet Transform for Surface Roughness Evaluation and Texture Extraction.
    Wang X; Shi T; Liao G; Zhang Y; Hong Y; Chen K
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28441749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of steep edges and undercuts in confocal microscopy.
    Mueller T; Jordan M; Schneider T; Poesch A; Reithmeier E
    Micron; 2016 May; 84():79-95. PubMed ID: 27011256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rapid method to achieve aero-engine blade form detection.
    Sun B; Li B
    Sensors (Basel); 2015 Jun; 15(6):12782-801. PubMed ID: 26039420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct assessment of profilometric roughness variability from typical implant surface types.
    Kohles SS; Clark MB; Brown CA; Kenealy JN
    Int J Oral Maxillofac Implants; 2004; 19(4):510-6. PubMed ID: 15346747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a chromatic confocal displacement sensor integrated with an optical laser head.
    Zakrzewski A; Jurewicz P; Koruba P; Ćwikła M; Reiner J
    Appl Opt; 2021 Apr; 60(11):3232-3241. PubMed ID: 33983224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface measuring coherence scanning interferometry beyond the specular reflection limit.
    Thomas M; Su R; de Groot P; Coupland J; Leach R
    Opt Express; 2021 Oct; 29(22):36121-36131. PubMed ID: 34809031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A curved edge diffraction-utilized displacement sensor for spindle metrology.
    Lee C; Mahajan SM; Zhao R; Jeon S
    Rev Sci Instrum; 2016 Jul; 87(7):075113. PubMed ID: 27475601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dental rotary instruments on the roughness and wettability of human dentin surfaces.
    Ayad MF; Johnston WM; Rosenstiel SF
    J Prosthet Dent; 2009 Aug; 102(2):81-8. PubMed ID: 19643221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some Considerations about the Use of Contact and Confocal Microscopy Methods in Surface Texture Measurement.
    García JC; Sanz Lobera A; Maresca P; Pareja TF; Wang C
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30127320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction in Errors in Roughness Evaluation with an Accurate Definition of the S-L Surface.
    Podulka P; Macek W; Branco R; Nejad RM
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fast and in-Situ Measuring Method Using Laser Triangulation Sensors for the Parameters of the Connecting Rod.
    Li XQ; Wang Z; Fu LH
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.