These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30104665)

  • 1. Emergence of winner-takes-all connectivity paths in random nanowire networks.
    Manning HG; Niosi F; da Rocha CG; Bellew AT; O'Callaghan C; Biswas S; Flowers PF; Wiley BJ; Holmes JD; Ferreira MS; Boland JJ
    Nat Commun; 2018 Aug; 9(1):3219. PubMed ID: 30104665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks.
    Milano G; Pedretti G; Montano K; Ricci S; Hashemkhani S; Boarino L; Ielmini D; Ricciardi C
    Nat Mater; 2022 Feb; 21(2):195-202. PubMed ID: 34608285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connectome of memristive nanowire networks through graph theory.
    Milano G; Miranda E; Ricciardi C
    Neural Netw; 2022 Jun; 150():137-148. PubMed ID: 35313246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergent dynamics of neuromorphic nanowire networks.
    Diaz-Alvarez A; Higuchi R; Sanz-Leon P; Marcus I; Shingaya Y; Stieg AZ; Gimzewski JK; Kuncic Z; Nakayama T
    Sci Rep; 2019 Oct; 9(1):14920. PubMed ID: 31624325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep-Dependent Memory Consolidation in a Neuromorphic Nanowire Network.
    Li Q; Diaz-Alvarez A; Tang D; Higuchi R; Shingaya Y; Nakayama T
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50573-50580. PubMed ID: 33135880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution and modulation of Ag filament dynamics within memristive devices based on necklace-like Ag@TiO
    Weng Z; Zhao Z; Jiang H; Fang Y; Lei W; Liu C
    Nanotechnology; 2022 Jan; 33(13):. PubMed ID: 34915460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topological Properties of Neuromorphic Nanowire Networks.
    Loeffler A; Zhu R; Hochstetter J; Li M; Fu K; Diaz-Alvarez A; Nakayama T; Shine JM; Kuncic Z
    Front Neurosci; 2020; 14():184. PubMed ID: 32210754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reservoir computing with 3D nanowire networks.
    Daniels RK; Mallinson JB; Heywood ZE; Bones PJ; Arnold MD; Brown SA
    Neural Netw; 2022 Oct; 154():122-130. PubMed ID: 35882080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-percolation to tune conductive behaviour in dynamical metallic nanowire networks.
    Fairfield JA; Rocha CG; O'Callaghan C; Ferreira MS; Boland JJ
    Nanoscale; 2016 Nov; 8(43):18516-18523. PubMed ID: 27782246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thousands of conductance levels in memristors integrated on CMOS.
    Rao M; Tang H; Wu J; Song W; Zhang M; Yin W; Zhuo Y; Kiani F; Chen B; Jiang X; Liu H; Chen HY; Midya R; Ye F; Jiang H; Wang Z; Wu M; Hu M; Wang H; Xia Q; Ge N; Li J; Yang JJ
    Nature; 2023 Mar; 615(7954):823-829. PubMed ID: 36991190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memristive and CMOS Devices for Neuromorphic Computing.
    Milo V; Malavena G; Monzio Compagnoni C; Ielmini D
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range temporal correlations in scale-free neuromorphic networks.
    Shirai S; Acharya SK; Bose SK; Mallinson JB; Galli E; Pike MD; Arnold MD; Brown SA
    Netw Neurosci; 2020; 4(2):432-447. PubMed ID: 32537535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmability of nanowire networks.
    Bellew AT; Bell AP; McCarthy EK; Fairfield JA; Boland JJ
    Nanoscale; 2014 Aug; 6(16):9632-9. PubMed ID: 24990707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information dynamics in neuromorphic nanowire networks.
    Zhu R; Hochstetter J; Loeffler A; Diaz-Alvarez A; Nakayama T; Lizier JT; Kuncic Z
    Sci Rep; 2021 Jun; 11(1):13047. PubMed ID: 34158521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromorphic learning, working memory, and metaplasticity in nanowire networks.
    Loeffler A; Diaz-Alvarez A; Zhu R; Ganesh N; Shine JM; Nakayama T; Kuncic Z
    Sci Adv; 2023 Apr; 9(16):eadg3289. PubMed ID: 37083527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation.
    Payvand M; Nair MV; Müller LK; Indiveri G
    Faraday Discuss; 2019 Feb; 213(0):487-510. PubMed ID: 30357205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-like critical dynamics and long-range temporal correlations in percolating networks of silver nanoparticles and functionality preservation after integration of insulating matrix.
    Carstens N; Adejube B; Strunskus T; Faupel F; Brown S; Vahl A
    Nanoscale Adv; 2022 Jul; 4(15):3149-3160. PubMed ID: 36132822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compound memristive synapse model for statistical learning through STDP in spiking neural networks.
    Bill J; Legenstein R
    Front Neurosci; 2014; 8():412. PubMed ID: 25565943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging memristive neurons for neuromorphic computing and sensing.
    Li Z; Tang W; Zhang B; Yang R; Miao X
    Sci Technol Adv Mater; 2023; 24(1):2188878. PubMed ID: 37090846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.