BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30105333)

  • 1. Femtosecond infrared spectroscopy reveals the primary events of the ferrioxalate actinometer.
    Straub S; Brünker P; Lindner J; Vöhringer P
    Phys Chem Chem Phys; 2018 Aug; 20(33):21390-21403. PubMed ID: 30105333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Iron Complex with a Bent, O-Coordinated CO
    Straub S; Brünker P; Lindner J; Vöhringer P
    Angew Chem Int Ed Engl; 2018 Apr; 57(18):5000-5005. PubMed ID: 29508915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved Fourier-transform infrared spectroscopy reveals the hidden bimolecular process of the ferrioxalate actinometer.
    Pilz FH; Lindner J; Vöhringer P
    Phys Chem Chem Phys; 2019 Nov; 21(43):23803-23807. PubMed ID: 31661103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast "end-on"-to-"side-on" binding-mode isomerization of an iron-carbon dioxide complex.
    Straub S; Vöhringer P
    Phys Chem Chem Phys; 2021 Sep; 23(33):17826-17835. PubMed ID: 34397055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrioxalate-polyoxometalate system as a new chemical actinometer.
    Lee J; Kim J; Choi W
    Environ Sci Technol; 2007 Aug; 41(15):5433-8. PubMed ID: 17822113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast photoelectron spectroscopy of photoexcited aqueous ferrioxalate.
    Longetti L; Barillot TR; Puppin M; Ojeda J; Poletto L; van Mourik F; Arrell CA; Chergui M
    Phys Chem Chem Phys; 2021 Nov; 23(44):25308-25316. PubMed ID: 34747432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Quantum Yield Determination via NMR Actinometry.
    Ji Y; DiRocco DA; Hong CM; Wismer MK; Reibarkh M
    Org Lett; 2018 Apr; 20(8):2156-2159. PubMed ID: 29589943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The photochemical route to octahedral iron(V). Primary processes and quantum yields from ultrafast mid-infrared spectroscopy.
    Vennekate H; Schwarzer D; Torres-Alacan J; Vöhringer P
    J Am Chem Soc; 2014 Jul; 136(28):10095-103. PubMed ID: 24949647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practical Chemical Actinometry-A Review.
    Rabani J; Mamane H; Pousty D; Bolton JR
    Photochem Photobiol; 2021 Sep; 97(5):873-902. PubMed ID: 34124787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photolysis in aqueous aerosols: 300 nm yields of Fe2+ from a ferrioxalate actinometer and of OH radical from nitrate ions.
    Bones DL; Phillips LF
    Phys Chem Chem Phys; 2009 Jul; 11(26):5392-9. PubMed ID: 19551207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convenient new chemical actinometer based on aqueous acetone, 2-propanol, and carbon tetrachloride.
    Li H; Betterton EA; Arnold RG; Ela WP; Barbaris B; Grachane C
    Environ Sci Technol; 2005 Apr; 39(7):2262-6. PubMed ID: 15871262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microelectrochemical actinometer for scanning electrochemical microscopy studies of photochemical processes.
    Fonseca SM; Ahmed S; Kemp TJ; Unwin PR
    Photochem Photobiol Sci; 2003 Feb; 2(2):98-103. PubMed ID: 12664968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accessible visible-light actinometer for the determination of photon flux and optical pathlength in flow photo microreactors.
    Roibu A; Fransen S; Leblebici ME; Meir G; Van Gerven T; Kuhn S
    Sci Rep; 2018 Apr; 8(1):5421. PubMed ID: 29615679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insight into photochemistry of ferrioxalate.
    Pozdnyakov IP; Kel OV; Plyusnin VF; Grivin VP; Bazhin NM
    J Phys Chem A; 2008 Sep; 112(36):8316-22. PubMed ID: 18707071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-Controlled Binding of Carbon Dioxide by an Iron Center: Insights from Ultrafast Mid-Infrared Spectroscopy.
    Straub S; Vöhringer P
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2519-2525. PubMed ID: 33022879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast primary processes of an iron-(III) azido complex in solution induced with 266 nm light.
    Vennekate H; Schwarzer D; Torres-Alacan J; Krahe O; Filippou AC; Neese F; Vöhringer P
    Phys Chem Chem Phys; 2012 May; 14(18):6165-72. PubMed ID: 22297268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum yield of the iodide-iodate chemical actinometer: dependence on wavelength and concentrations.
    Rahn RO; Stefan MI; Bolton JR; Goren E; Shaw PS; Lykke KR
    Photochem Photobiol; 2003 Aug; 78(2):146-52. PubMed ID: 12945582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron transfer mechanism and photochemistry of ferrioxalate induced by excitation in the charge transfer band.
    Chen J; Zhang H; Tomov IV; Rentzepis PM
    Inorg Chem; 2008 Mar; 47(6):2024-32. PubMed ID: 18284192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of potassium iodide as a chemical actinometer.
    Rahn RO
    Photochem Photobiol; 1993 Dec; 58(6):874-80. PubMed ID: 8310010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical reduction and reoxidation of aqueous mercuric chloride in the presence of ferrioxalate and air.
    Ababneh FA; Scott SL; Al-Reasi HA; Lean DR
    Sci Total Environ; 2006 Aug; 367(2-3):831-9. PubMed ID: 16690102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.