These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30105338)

  • 1. Fluorescence enhancement from single gold nanostars: towards ultra-bright emission in the first and second near-infrared biological windows.
    Theodorou IG; Jiang Q; Malms L; Xie X; Coombes RC; Aboagye EO; Porter AE; Ryan MP; Xie F
    Nanoscale; 2018 Aug; 10(33):15854-15864. PubMed ID: 30105338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.
    Jin Y
    Acc Chem Res; 2014 Jan; 47(1):138-48. PubMed ID: 23992824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards multiplexed near-infrared cellular imaging using gold nanostar arrays with tunable fluorescence enhancement.
    Theodorou IG; Ruenraroengsak P; Gonzalez-Carter DA; Jiang Q; Yagüe E; Aboagye EO; Coombes RC; Porter AE; Ryan MP; Xie F
    Nanoscale; 2019 Jan; 11(4):2079-2088. PubMed ID: 30648720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages.
    Camposeo A; Persano L; Manco R; Wang Y; Del Carro P; Zhang C; Li ZY; Pisignano D; Xia Y
    ACS Nano; 2015 Oct; 9(10):10047-54. PubMed ID: 26397166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences between surfactant-free Au@Ag and CTAB-stabilized Au@Ag star-like nanoparticles in the preparation of nanoarrays to improve their surface-enhanced Raman scattering (SERS) performance.
    Van Vu S; Nguyen AT; Cao Tran AT; Thi Le VH; Lo TNH; Ho TH; Pham NNT; Park I; Vo KQ
    Nanoscale Adv; 2023 Oct; 5(20):5543-5561. PubMed ID: 37822906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold Nanostars-AIE Theranostic Nanodots with Enhanced Fluorescence and Photosensitization Towards Effective Image-Guided Photodynamic Therapy.
    Tavakkoli Yaraki M; Wu M; Middha E; Wu W; Daqiqeh Rezaei S; Liu B; Tan YN
    Nanomicro Lett; 2021 Jan; 13(1):58. PubMed ID: 34138261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters.
    He L; Mao C; Cho S; Ma K; Xi W; Bowman CN; Park W; Cha JN
    Nanoscale; 2015 Nov; 7(41):17254-60. PubMed ID: 26427014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions.
    Liebig F; Henning R; Sarhan RM; Prietzel C; Schmitt CNZ; Bargheer M; Koetz J
    RSC Adv; 2019 Jul; 9(41):23633-23641. PubMed ID: 35530609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile preparation of albumin-stabilized gold nanostars for the targeted photothermal ablation of cancer cells.
    Li J; Cai R; Kawazoe N; Chen G
    J Mater Chem B; 2015 Jul; 3(28):5806-5814. PubMed ID: 32262577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An enzyme-responsive metal-enhanced near-infrared fluorescence sensor based on functionalized gold nanoparticles.
    Zeng Z; Mizukami S; Fujita K; Kikuchi K
    Chem Sci; 2015 Aug; 6(8):4934-4939. PubMed ID: 29142724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanostars: Benzyldimethylammonium chloride-assisted synthesis, plasmon tuning, SERS and catalytic activity.
    Ndokoye P; Li X; Zhao Q; Li T; Tade MO; Liu S
    J Colloid Interface Sci; 2016 Jan; 462():341-50. PubMed ID: 26476203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Surface Curvature in Gold Nanostar Properties and Applications.
    Xi Z; Zhang R; Kiessling F; Lammers T; Pallares RM
    ACS Biomater Sci Eng; 2024 Jan; 10(1):38-50. PubMed ID: 37249042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning of Morphology and Stability of Gold Nanostars Through pH Adjustment.
    Kumar R; Badilescu S; Packirisamy M
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4617-4622. PubMed ID: 30913757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative, Flexible, and Miniaturized Microfluidic Paper-Based Plasmonic Chip for Efficient Near-Infrared Metal Enhanced Fluorescence Biosensing and Imaging.
    Campu A; Muresan I; Craciun AM; Vulpoi A; Cainap S; Astilean S; Focsan M
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55925-55937. PubMed ID: 37983540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization- and wavelength-dependent defocused scattering imaging of single gold nanostars with multiple long branches.
    Kim GW; Ha JW
    Photochem Photobiol Sci; 2019 Jun; 18(6):1430-1435. PubMed ID: 30946416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal enhanced fluorescence biosensing: from ultra-violet towards second near-infrared window.
    Fothergill SM; Joyce C; Xie F
    Nanoscale; 2018 Dec; 10(45):20914-20929. PubMed ID: 30324956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seedless gold nanostars with seed-like advantages for biosensing applications.
    Phiri MM; Mulder DW; Vorster BC
    R Soc Open Sci; 2019 Feb; 6(2):181971. PubMed ID: 30891302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Hybrid Silver-Coated Gold Nanostars for Nonaggregated Surface-Enhanced Raman Scattering.
    Fales AM; Yuan H; Vo-Dinh T
    J Phys Chem C Nanomater Interfaces; 2014 Feb; 118(7):3708-3715. PubMed ID: 24803974
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.