BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30105826)

  • 21. Fibroblast Growth Factor 2 Enhances Tendon-to-Bone Healing in a Rat Rotator Cuff Repair of Chronic Tears.
    Yonemitsu R; Tokunaga T; Shukunami C; Ideo K; Arimura H; Karasugi T; Nakamura E; Ide J; Hiraki Y; Mizuta H
    Am J Sports Med; 2019 Jun; 47(7):1701-1712. PubMed ID: 31038985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Footprint Preparation on Tendon-to-Bone Healing: A Histologic and Biomechanical Study in a Rat Rotator Cuff Repair Model.
    Nakagawa H; Morihara T; Fujiwara H; Kabuto Y; Sukenari T; Kida Y; Furukawa R; Arai Y; Matsuda KI; Kawata M; Tanaka M; Kubo T
    Arthroscopy; 2017 Aug; 33(8):1482-1492. PubMed ID: 28606577
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of adipose tissue-derived stem cells in a rat rotator cuff repair model.
    Valencia Mora M; Antuña Antuña S; García Arranz M; Carrascal MT; Barco R
    Injury; 2014 Oct; 45 Suppl 4():S22-7. PubMed ID: 25384471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells regulate inflammation and enhance tendon healing.
    Shi Z; Wang Q; Jiang D
    J Transl Med; 2019 Jun; 17(1):211. PubMed ID: 31238964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of a Demineralized Cortical Bone Matrix and Bone Marrow-Derived Mesenchymal Stem Cells in a Model of Chronic Rotator Cuff Degeneration.
    Thangarajah T; Sanghani-Kerai A; Henshaw F; Lambert SM; Pendegrass CJ; Blunn GW
    Am J Sports Med; 2018 Jan; 46(1):98-108. PubMed ID: 28949253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model.
    Gulotta LV; Kovacevic D; Packer JD; Deng XH; Rodeo SA
    Am J Sports Med; 2011 Jun; 39(6):1282-9. PubMed ID: 21335341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exosome-delivered BMP-2 and polyaspartic acid promotes tendon bone healing in rotator cuff tear via Smad/RUNX2 signaling pathway.
    Han L; Liu H; Fu H; Hu Y; Fang W; Liu J
    Bioengineered; 2022 Jan; 13(1):1459-1475. PubMed ID: 35258414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered Cell Sheets for the Effective Delivery of Adipose-Derived Stem Cells for Tendon-to-Bone Healing.
    Shin MJ; Shim IK; Kim DM; Choi JH; Lee YN; Jeon IH; Kim H; Park D; Kholinne E; Yang HS; Koh KH
    Am J Sports Med; 2020 Nov; 48(13):3347-3358. PubMed ID: 33136454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface modification of the simvastatin factor-loaded silk fibroin promotes the healing of rotator cuff injury through β-catenin signaling.
    Hao L; Chen J; Shang X; Chen S
    J Biomater Appl; 2021 Aug; 36(2):210-218. PubMed ID: 33779364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model.
    Hee CK; Dines JS; Dines DM; Roden CM; Wisner-Lynch LA; Turner AS; McGilvray KC; Lyons AS; Puttlitz CM; Santoni BG
    Am J Sports Med; 2011 Aug; 39(8):1630-9. PubMed ID: 21555508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sclerostin Antibody Treatment Enhances Rotator Cuff Tendon-to-Bone Healing in an Animal Model.
    Shah SA; Kormpakis I; Havlioglu N; Ominsky MS; Galatz LM; Thomopoulos S
    J Bone Joint Surg Am; 2017 May; 99(10):855-864. PubMed ID: 28509826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tendon-to-Bone Healing in a Rat Extra-articular Bone Tunnel Model: A Comparison of Fresh Autologous Bone Marrow and Bone Marrow-Derived Mesenchymal Stem Cells.
    Lu J; Chamberlain CS; Ji ML; Saether EE; Leiferman EM; Li WJ; Vanderby R
    Am J Sports Med; 2019 Sep; 47(11):2729-2736. PubMed ID: 31339739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model.
    Yea JH; Bae TS; Kim BJ; Cho YW; Jo CH
    Acta Biomater; 2020 Sep; 114():104-116. PubMed ID: 32682057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biologic approaches to enhance rotator cuff healing after injury.
    Isaac C; Gharaibeh B; Witt M; Wright VJ; Huard J
    J Shoulder Elbow Surg; 2012 Feb; 21(2):181-90. PubMed ID: 22244061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model.
    Chen W; Sun Y; Gu X; Cai J; Liu X; Zhang X; Chen J; Hao Y; Chen S
    Biomaterials; 2021 Apr; 271():120714. PubMed ID: 33610048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model.
    Gulotta LV; Kovacevic D; Ehteshami JR; Dagher E; Packer JD; Rodeo SA
    Am J Sports Med; 2009 Nov; 37(11):2126-33. PubMed ID: 19684297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chronic Degeneration Leads to Poor Healing of Repaired Massive Rotator Cuff Tears in Rats.
    Killian ML; Cavinatto LM; Ward SR; Havlioglu N; Thomopoulos S; Galatz LM
    Am J Sports Med; 2015 Oct; 43(10):2401-10. PubMed ID: 26297522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Healing Effect of Subcutaneous Administration of Granulocyte Colony-Stimulating Factor on Acute Rotator Cuff Injury in a Rat Model.
    Kobayashi Y; Kida Y; Kabuto Y; Morihara T; Sukenari T; Nakagawa H; Onishi O; Oda R; Kida N; Tanida T; Matsuda KI; Tanaka M; Takahashi K
    Tissue Eng Part A; 2021 Sep; 27(17-18):1205-1212. PubMed ID: 34432525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caveolin-1 is involved in fatty infiltration and bone-tendon healing of rotator cuff tear.
    Fang S; You M; Wei J; Chen P
    Mol Med; 2023 Mar; 29(1):33. PubMed ID: 36918760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Up-Regulation of TGF-β Promotes Tendon-to-Bone Healing after Anterior Cruciate Ligament Reconstruction using Bone Marrow-Derived Mesenchymal Stem Cells through the TGF-β/MAPK Signaling Pathway in a New Zealand White Rabbit Model.
    Wang R; Xu B; Xu HG
    Cell Physiol Biochem; 2017; 41(1):213-226. PubMed ID: 28214835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.