These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 30105917)
21. Pro-oxidant vitamin C mechanistically exploits p66Shc/Rac1 GTPase pathway in inducing cytotoxicity. Mir HA; Ali R; Wani ZA; Khanday FA Int J Biol Macromol; 2022 Apr; 205():154-168. PubMed ID: 35181322 [TBL] [Abstract][Full Text] [Related]
22. p66Shc mediates high-glucose and angiotensin II-induced oxidative stress renal tubular injury via mitochondrial-dependent apoptotic pathway. Sun L; Xiao L; Nie J; Liu FY; Ling GH; Zhu XJ; Tang WB; Chen WC; Xia YC; Zhan M; Ma MM; Peng YM; Liu H; Liu YH; Kanwar YS Am J Physiol Renal Physiol; 2010 Nov; 299(5):F1014-25. PubMed ID: 20739391 [TBL] [Abstract][Full Text] [Related]
23. P66Shc, a key regulator of metabolism and mitochondrial ROS production, is dysregulated by mouse embryo culture. Edwards NA; Watson AJ; Betts DH Mol Hum Reprod; 2016 Sep; 22(9):634-47. PubMed ID: 27385725 [TBL] [Abstract][Full Text] [Related]
24. Exendin-4 inhibits high glucose-induced oxidative stress in retinal pigment epithelial cells by modulating the expression and activation of p Al Sabaani N Cutan Ocul Toxicol; 2021 Sep; 40(3):175-186. PubMed ID: 34275397 [TBL] [Abstract][Full Text] [Related]
25. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Kim YM; Kim SJ; Tatsunami R; Yamamura H; Fukai T; Ushio-Fukai M Am J Physiol Cell Physiol; 2017 Jun; 312(6):C749-C764. PubMed ID: 28424170 [TBL] [Abstract][Full Text] [Related]
26. P66 Kong X; Guan J; Li J; Wei J; Wang R Mol Neurobiol; 2017 Sep; 54(7):5277-5285. PubMed ID: 27578018 [TBL] [Abstract][Full Text] [Related]
27. The pro-oxidant adaptor p66SHC promotes B cell mitophagy by disrupting mitochondrial integrity and recruiting LC3-II. Onnis A; Cianfanelli V; Cassioli C; Samardzic D; Pelicci PG; Cecconi F; Baldari CT Autophagy; 2018; 14(12):2117-2138. PubMed ID: 30109811 [TBL] [Abstract][Full Text] [Related]
29. P66Shc-rac1 pathway-mediated ROS production and cell migration is downregulated by ascorbic acid. Kirmani D; Bhat HF; Bashir M; Zargar MA; Khanday FA J Recept Signal Transduct Res; 2013 Apr; 33(2):107-13. PubMed ID: 23461363 [TBL] [Abstract][Full Text] [Related]
30. Role of adaptor protein p66Shc in renal pathologies. Wright KD; Staruschenko A; Sorokin A Am J Physiol Renal Physiol; 2018 Feb; 314(2):F143-F153. PubMed ID: 28978535 [TBL] [Abstract][Full Text] [Related]
31. Interrelationship between activation of matrix metalloproteinases and mitochondrial dysfunction in the development of diabetic retinopathy. Santos JM; Tewari S; Lin JY; Kowluru RA Biochem Biophys Res Commun; 2013 Sep; 438(4):760-4. PubMed ID: 23891690 [TBL] [Abstract][Full Text] [Related]
32. Hyperlipidemia and the development of diabetic retinopathy: Comparison between type 1 and type 2 animal models. Kowluru RA; Mishra M; Kowluru A; Kumar B Metabolism; 2016 Oct; 65(10):1570-81. PubMed ID: 27621192 [TBL] [Abstract][Full Text] [Related]
33. Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy. Duraisamy AJ; Mohammad G; Kowluru RA Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1617-1626. PubMed ID: 30922813 [TBL] [Abstract][Full Text] [Related]
34. Phagocyte-like NADPH oxidase (Nox2) promotes activation of p38MAPK in pancreatic β-cells under glucotoxic conditions: Evidence for a requisite role of Ras-related C3 botulinum toxin substrate 1 (Rac1). Sidarala V; Veluthakal R; Syeda K; Vlaar C; Newsholme P; Kowluru A Biochem Pharmacol; 2015 Jun; 95(4):301-10. PubMed ID: 25881746 [TBL] [Abstract][Full Text] [Related]
35. DJ-1/PARK7 inhibits high glucose-induced oxidative stress to prevent retinal pericyte apoptosis via the PI3K/AKT/mTOR signaling pathway. Zeng J; Zhao H; Chen B Exp Eye Res; 2019 Dec; 189():107830. PubMed ID: 31593688 [TBL] [Abstract][Full Text] [Related]
36. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy. Zhong Q; Kowluru RA Diabetes; 2013 Jul; 62(7):2559-68. PubMed ID: 23423566 [TBL] [Abstract][Full Text] [Related]
38. Molecular Mechanism of Transcriptional Regulation of Matrix Metalloproteinase-9 in Diabetic Retinopathy. Mishra M; Flaga J; Kowluru RA J Cell Physiol; 2016 Aug; 231(8):1709-18. PubMed ID: 26599598 [TBL] [Abstract][Full Text] [Related]
39. PKCδ promotes high glucose induced renal tubular oxidative damage via regulating activation and translocation of p66Shc. Song P; Yang S; Xiao L; Xu X; Tang C; Yang Y; Ma M; Zhu J; Liu F; Sun L Oxid Med Cell Longev; 2014; 2014():746531. PubMed ID: 25371776 [TBL] [Abstract][Full Text] [Related]
40. Chronic nicotine exposure augments renal oxidative stress and injury through transcriptional activation of p66shc. Arany I; Clark J; Reed DK; Juncos LA Nephrol Dial Transplant; 2013 Jun; 28(6):1417-25. PubMed ID: 23328708 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]