BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30106057)

  • 1. Effect of Graphene Nanoribbons (TexasPEG) on locomotor function recovery in a rat model of lumbar spinal cord transection.
    Kim CY; Sikkema WKA; Kim J; Kim JA; Walter J; Dieter R; Chung HM; Mana A; Tour JM; Canavero S
    Neural Regen Res; 2018 Aug; 13(8):1440-1446. PubMed ID: 30106057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord fusion with PEG-GNRs (TexasPEG): Neurophysiological recovery in 24 hours in rats.
    Kim CY; Sikkema WK; Hwang IK; Oh H; Kim UJ; Lee BH; Tour JM
    Surg Neurol Int; 2016; 7(Suppl 24):S632-6. PubMed ID: 27656326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GEMINI: Initial behavioral results after full severance of the cervical spinal cord in mice.
    Kim CY; Oh H; Hwang IK; Hong KS
    Surg Neurol Int; 2016; 7(Suppl 24):S629-31. PubMed ID: 27656325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restoration of motor function after operative reconstruction of the acutely transected spinal cord in the canine model.
    Liu Z; Ren S; Fu K; Wu Q; Wu J; Hou L; Pan H; Sun L; Zhang J; Wang B; Miao Q; Sun G; Bonicalzi V; Canavero S; Ren X
    Surgery; 2018 May; 163(5):976-983. PubMed ID: 29223327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats.
    Kaneko A; Matsushita A; Sankai Y
    Biomed Mater; 2015 Jan; 10(1):015008. PubMed ID: 25585935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord.
    Lu J; FĂ©ron F; Mackay-Sim A; Waite PM
    Brain; 2002 Jan; 125(Pt 1):14-21. PubMed ID: 11834589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of chondroitinase ABC on axonal myelination and glial scar after spinal cord injury in rats].
    Zhang T; Shen Y; Lu L; Fan Z; Huo W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Feb; 27(2):145-50. PubMed ID: 23596678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmented locomotor recovery after spinal cord injury in the athymic nude rat.
    Potas JR; Zheng Y; Moussa C; Venn M; Gorrie CA; Deng C; Waite PM
    J Neurotrauma; 2006 May; 23(5):660-73. PubMed ID: 16689668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodynamic Therapy Mediated by Upconversion Nanoparticles to Reduce Glial Scar Formation and Promote Hindlimb Functional Recovery After Spinal Cord Injury in Rats.
    Liu Y; Ban DX; Ma C; Zhang ZG; Zhang JY; Gao SJ; Feng SQ
    J Biomed Nanotechnol; 2016 Nov; 12(11):2063-75. PubMed ID: 29364623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury.
    Wang LJ; Zhang RP; Li JD
    Acta Neurochir (Wien); 2014 Jul; 156(7):1409-18. PubMed ID: 24744011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of bone marrow mesenchymal stem cells with acellular muscle bioscaffolds on repair of acute hemi-transection spinal cord injury in rats].
    Wei X; Wen Y; Zhang T; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Nov; 26(11):1362-8. PubMed ID: 23230674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral nerve grafts and aFGF restore partial hindlimb function in adult paraplegic rats.
    Lee YS; Hsiao I; Lin VW
    J Neurotrauma; 2002 Oct; 19(10):1203-16. PubMed ID: 12427329
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Zhang Q; Zhang LX; An J; Yan L; Liu CC; Zhao JJ; Yang H
    Neural Regen Res; 2018 Dec; 13(12):2200-2208. PubMed ID: 30323153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a spinal cord injury model in adult rats by an electrocircuit-controlled impacting device and its pathological observations.
    Wang Y; Liu CF; Wang QP; Gao H; Na HR; Yu RT
    Cell Biochem Biophys; 2014 Jun; 69(2):333-40. PubMed ID: 24338564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Repair of acute spinal cord injury promoted by transplantation of olfactory ensheathing glia].
    Sun TS; Ren JX; Shi JG
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2005 Apr; 27(2):143-7. PubMed ID: 15960254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lentivirus-mediated silencing of the CTGF gene suppresses the formation of glial scar tissue in a rat model of spinal cord injury.
    Wang Y; Kong QJ; Sun JC; Yang Y; Wang HB; Zhang Q; Shi JG
    Spine J; 2018 Jan; 18(1):164-172. PubMed ID: 28089819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats.
    Lee YS; Lin CY; Robertson RT; Hsiao I; Lin VW
    J Neuropathol Exp Neurol; 2004 Mar; 63(3):233-45. PubMed ID: 15055447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury.
    Roonprapunt C; Huang W; Grill R; Friedlander D; Grumet M; Chen S; Schachner M; Young W
    J Neurotrauma; 2003 Sep; 20(9):871-82. PubMed ID: 14577865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms responsible for the inhibitory effects of epothilone B on scar formation after spinal cord injury.
    Zhao W; Chai Y; Hou Y; Wang DW; Xing JQ; Yang C; Fang QM
    Neural Regen Res; 2017 Mar; 12(3):478-485. PubMed ID: 28469665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.