These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 30106150)

  • 21. Transcriptomic analysis and identification of prognostic biomarkers in cholangiocarcinoma.
    Li H; Long J; Xie F; Kang K; Shi Y; Xu W; Wu X; Lin J; Xu H; Du S; Xu Y; Zhao H; Zheng Y; Gu J
    Oncol Rep; 2019 Nov; 42(5):1833-1842. PubMed ID: 31545466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and Analysis of Key Genes Driving Gastric Cancer Through Bioinformatics.
    Liu Z; Liu S; Guo J; Sun L; Wang S; Wang Y; Qiu W; Lv J
    Genet Test Mol Biomarkers; 2021 Jan; 25(1):1-11. PubMed ID: 33470887
    [No Abstract]   [Full Text] [Related]  

  • 23. Transcriptome sequencing identifies key pathways and genes involved in gastric adenocarcinoma.
    Zhang W; Liu S; Zhan H; Yan Z; Zhang G
    Mol Med Rep; 2018 Oct; 18(4):3673-3682. PubMed ID: 30106143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemo-resistant Gastric Cancer Associated Gene Expression Signature: Bioinformatics Analysis Based on Gene Expression Omnibus.
    Liu JB; Jian T; Yue C; Chen D; Chen W; Bao TT; Liu HX; Cao Y; Li WB; Yang Z; Hoffman RM; Yu C
    Anticancer Res; 2019 Apr; 39(4):1689-1698. PubMed ID: 30952707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global gene expression analysis of knockdown Triosephosphate isomerase (TPI) gene in human gastric cancer cell line MGC-803.
    Ouyang P; Lin B; Du J; Pan H; Yu H; He R; Huang Z
    Gene; 2018 Mar; 647():61-72. PubMed ID: 29307852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.
    Zhang C; Peng L; Zhang Y; Liu Z; Li W; Chen S; Li G
    Med Oncol; 2017 Jun; 34(6):101. PubMed ID: 28432618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global transcriptome‑wide analysis of the function of GDDR in acute gastric lesions.
    Zhang Z; Zhu J; Dong Y; Xu H; Jiang T; Li W; Xu D; Shi L; Yu J; Zhang J; Du J
    Mol Med Rep; 2017 Dec; 16(6):8673-8684. PubMed ID: 28990076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tetraspanin family identified as the central genes detected in gastric cancer using bioinformatics analysis.
    Qi W; Sun L; Liu N; Zhao S; Lv J; Qiu W
    Mol Med Rep; 2018 Oct; 18(4):3599-3610. PubMed ID: 30106120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer.
    Peng C; Ma W; Xia W; Zheng W
    Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microarray-Based Gene Expression Analysis Identifies Potential Diagnostic and Prognostic Biomarkers for Waldenström Macroglobulinemia.
    Xu H; Yao F
    Acta Haematol; 2018; 140(2):87-96. PubMed ID: 30227405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.
    Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R
    Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A systems biology approach to detect key pathways and interaction networks in gastric cancer on the basis of microarray analysis.
    Guo L; Song C; Wang P; Dai L; Zhang J; Wang K
    Mol Med Rep; 2015 Nov; 12(5):7139-45. PubMed ID: 26324226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Potential Core Genes Associated With the Progression of Stomach Adenocarcinoma Using Bioinformatic Analysis.
    Yang B; Zhang M; Luo T
    Front Genet; 2020; 11():517362. PubMed ID: 33193601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delineating the underlying molecular mechanisms and key genes involved in metastasis of colorectal cancer via bioinformatics analysis.
    Qi C; Chen Y; Zhou Y; Huang X; Li G; Zeng J; Ruan Z; Xie X; Zhang J
    Oncol Rep; 2018 May; 39(5):2297-2305. PubMed ID: 29517105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel scoring system for gastric cancer risk assessment based on the expression of three CLIP4 DNA methylation-associated genes.
    Hu C; Zhou Y; Liu C; Kang Y
    Int J Oncol; 2018 Aug; 53(2):633-643. PubMed ID: 29901187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of genes and long non-coding RNAs associated with the pathogenesis of gastric cancer.
    Zhao Z; Song Y; Piao D; Liu T; Zhao L
    Oncol Rep; 2015 Sep; 34(3):1301-10. PubMed ID: 26177842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An ego network analysis approach identified important biomarkers with an association to progression and metastasis of gastric cancer.
    Tian X; Ju H; Yang W
    J Cell Biochem; 2019 Sep; 120(9):15963-15970. PubMed ID: 31081222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of an immunorelated protein-protein interaction network for clarifying the mechanism of burn.
    Gao Y; Nai W; Yang L; Lu Z; Shi P; Jin H; Wen H; Wang G
    Burns; 2016 Mar; 42(2):405-13. PubMed ID: 26739088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Key Genes and Signaling Pathways Associated with the Progression of Gastric Cancer.
    Yu C; Chen J; Ma J; Zang L; Dong F; Sun J; Zheng M
    Pathol Oncol Res; 2020 Jul; 26(3):1903-1919. PubMed ID: 31848941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of potential hub genes of gastric cancer.
    Zhou XD; Qu YW; Wang L; Jia FH; Chen P; Wang YP; Liu HF
    Medicine (Baltimore); 2022 Oct; 101(41):e30741. PubMed ID: 36254003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.