These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30106472)

  • 1. On the mechanisms of development in monocot and eudicot leaves.
    Conklin PA; Strable J; Li S; Scanlon MJ
    New Phytol; 2019 Jan; 221(2):706-724. PubMed ID: 30106472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales.
    Rudall PJ; Bateman RM
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1179-1194. PubMed ID: 30714286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed in situ hybridization reveals distinct lineage identities for major and minor vein initiation during maize leaf development.
    Perico C; Zaidem M; Sedelnikova O; Bhattacharya S; Korfhage C; Langdale JA
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2402514121. PubMed ID: 38959034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogeny of the sheathing leaf base in maize (Zea mays).
    Johnston R; Leiboff S; Scanlon MJ
    New Phytol; 2015 Jan; 205(1):306-15. PubMed ID: 25195692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin.
    Perico C; Tan S; Langdale JA
    New Phytol; 2022 May; 234(3):783-803. PubMed ID: 35020214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative venation costs of monocotyledon and dicotyledon species in the eastern Colorado steppe.
    Drobnitch ST; Kray JA; Gleason SM; Ocheltree TW
    Planta; 2024 May; 260(1):2. PubMed ID: 38761315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and development of monocot stomata.
    Rudall PJ; Chen ED; Cullen E
    Am J Bot; 2017 Aug; 104(8):1122-1141. PubMed ID: 28794059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Getting closer: vein density in C
    Kumar D; Kellogg EA
    New Phytol; 2019 Feb; 221(3):1260-1267. PubMed ID: 30368826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Ann Bot; 2016 Nov; 118(6):1127-1138. PubMed ID: 27578763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended differentiation of veins and stomata is essential for the expansion of large leaves in Rheum rhabarbarum.
    Cardoso AA; Randall JM; Jordan GJ; McAdam SAM
    Am J Bot; 2018 Dec; 105(12):1967-1974. PubMed ID: 30475383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SHORTROOT-Mediated Increase in Stomatal Density Has No Impact on Photosynthetic Efficiency.
    Schuler ML; Sedelnikova OV; Walker BJ; Westhoff P; Langdale JA
    Plant Physiol; 2018 Jan; 176(1):757-772. PubMed ID: 29127261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A common developmental program can produce diverse leaf shapes.
    Runions A; Tsiantis M; Prusinkiewicz P
    New Phytol; 2017 Oct; 216(2):401-418. PubMed ID: 28248421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does Molecular and Structural Evolution Shape the Speedy Grass Stomata?
    Wang Y; Chen ZH
    Front Plant Sci; 2020; 11():333. PubMed ID: 32373136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of the grass leaf by primordium extension and petiole-lamina remodeling.
    Richardson AE; Cheng J; Johnston R; Kennaway R; Conlon BR; Rebocho AB; Kong H; Scanlon MJ; Hake S; Coen E
    Science; 2021 Dec; 374(6573):1377-1381. PubMed ID: 34882477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Take a deep breath: peptide signalling in stomatal patterning and differentiation.
    Richardson LG; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5243-51. PubMed ID: 23997204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaxial-abaxial polarity: the developmental basis of leaf shape diversity.
    Fukushima K; Hasebe M
    Genesis; 2014 Jan; 52(1):1-18. PubMed ID: 24281766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potomacapnos apeleutheron gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac Group and its implications for the evolution of eudicot leaf architecture.
    Jud NA; Hickey LJ
    Am J Bot; 2013 Dec; 100(12):2437-49. PubMed ID: 24287268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vein patterning in growing leaves: axes and polarities.
    Rolland-Lagan AG
    Curr Opin Genet Dev; 2008 Aug; 18(4):348-53. PubMed ID: 18606536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A eudicot leaf from the Lower Cretaceous (Aptian, Araripe Basin) Crato Konservat-Lagerstätte.
    Pessoa EM; Ribeiro AC; Jud NA
    Am J Bot; 2021 Oct; 108(10):2055-2065. PubMed ID: 34647319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making leaves.
    Byrne ME
    Curr Opin Plant Biol; 2012 Feb; 15(1):24-30. PubMed ID: 22079784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.