BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 30106500)

  • 1. JAGN1 is required for fungal killing in neutrophil extracellular traps: Implications for severe congenital neutropenia.
    Khandagale A; Lazzaretto B; Carlsson G; Sundin M; Shafeeq S; Römling U; Fadeel B
    J Leukoc Biol; 2018 Dec; 104(6):1199-1213. PubMed ID: 30106500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis.
    Nakazawa D; Tomaru U; Suzuki A; Masuda S; Hasegawa R; Kobayashi T; Nishio S; Kasahara M; Ishizu A
    Arthritis Rheum; 2012 Nov; 64(11):3779-87. PubMed ID: 22777766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rab27a is essential for the formation of neutrophil extracellular traps (NETs) in neutrophil-like differentiated HL60 cells.
    Kawakami T; He J; Morita H; Yokoyama K; Kaji H; Tanaka C; Suemori S; Tohyama K; Tohyama Y
    PLoS One; 2014; 9(1):e84704. PubMed ID: 24404184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. JAGN1 Deficient Severe Congenital Neutropenia: Two Cases from the Same Family.
    Baris S; Karakoc-Aydiner E; Ozen A; Delil K; Kiykim A; Ogulur I; Baris I; Barlan IB
    J Clin Immunol; 2015 May; 35(4):339-43. PubMed ID: 25851723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jagunal homolog 1 is a critical regulator of neutrophil function in fungal host defense.
    Wirnsberger G; Zwolanek F; Stadlmann J; Tortola L; Liu SW; Perlot T; Järvinen P; Dürnberger G; Kozieradzki I; Sarao R; De Martino A; Boztug K; Mechtler K; Kuchler K; Klein C; Elling U; Penninger JM
    Nat Genet; 2014 Sep; 46(9):1028-33. PubMed ID: 25129145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia.
    Boztug K; Järvinen PM; Salzer E; Racek T; Mönch S; Garncarz W; Gertz EM; Schäffer AA; Antonopoulos A; Haslam SM; Schieck L; Puchałka J; Diestelhorst J; Appaswamy G; Lescoeur B; Giambruno R; Bigenzahn JW; Elling U; Pfeifer D; Conde CD; Albert MH; Welte K; Brandes G; Sherkat R; van der Werff Ten Bosch J; Rezaei N; Etzioni A; Bellanné-Chantelot C; Superti-Furga G; Penninger JM; Bennett KL; von Blume J; Dell A; Donadieu J; Klein C
    Nat Genet; 2014 Sep; 46(9):1021-7. PubMed ID: 25129144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes.
    Yoo DG; Floyd M; Winn M; Moskowitz SM; Rada B
    Immunol Lett; 2014 Aug; 160(2):186-94. PubMed ID: 24670966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Next-Generation Sequencing Reveals A JAGN1 Mutation in a Syndromic Child With Intermittent Neutropenia.
    Cifaldi C; Serafinelli J; Petricone D; Brigida I; Di Cesare S; Di Matteo G; Chiriaco M; De Vito R; Palumbo G; Rossi P; Palma P; Cancrini C; Aiuti A; Finocchi A
    J Pediatr Hematol Oncol; 2019 May; 41(4):e266-e269. PubMed ID: 30044346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Severe congenital neutropenia-associated JAGN1 mutations unleash a calpain-dependent cell death programme in myeloid cells.
    Khandagale A; Holmlund T; Entesarian M; Nilsson D; Kalwak K; Klaudel-Dreszler M; Carlsson G; Henter JI; Nordenskjöld M; Fadeel B
    Br J Haematol; 2021 Jan; 192(1):200-211. PubMed ID: 33206996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Inhibitory Effect of Curosurf
    Schulz A; Pagerols Raluy L; Kolman JP; Königs I; Trochimiuk M; Appl B; Reinshagen K; Boettcher M; Trah J
    Front Immunol; 2020; 11():582895. PubMed ID: 33574811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rare case of syndromic severe congenital neutropenia: JAGN1 mutation.
    Çipe FE; Aydoğmuş Ç; Baskın K; Keskindemirci G; Garncarz W; Boztuğ K
    Turk J Pediatr; 2020; 62(2):326-331. PubMed ID: 32419428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Optimization and verification of conditions for induction of neutrophil extracellular traps in vitro].
    Qi MZ; Li ZH; Huang HL; Zhu PP; Zhu LL; Lin N; Su XH; Kong XY
    Zhongguo Zhong Yao Za Zhi; 2024 May; 49(9):2336-2344. PubMed ID: 38812134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NET Release of Long-Term Surviving Neutrophils.
    Kolman JP; Pagerols Raluy L; Müller I; Nikolaev VO; Trochimiuk M; Appl B; Wadehn H; Dücker CM; Stoll FD; Boettcher M; Reinshagen K; Trah J
    Front Immunol; 2022; 13():815412. PubMed ID: 35242132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The antagonistic effect of Se on the Pb-weakening formation of neutrophil extracellular traps in chicken neutrophils.
    Yin K; Yang Z; Gong Y; Wang D; Lin H
    Ecotoxicol Environ Saf; 2019 May; 173():225-234. PubMed ID: 30772712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative Action of Oxidized Low-Density Lipoproteins and Neutrophils on Endothelial Inflammatory Responses Through Neutrophil Extracellular Trap Formation.
    Obama T; Ohinata H; Takaki T; Iwamoto S; Sawada N; Aiuchi T; Kato R; Itabe H
    Front Immunol; 2019; 10():1899. PubMed ID: 31447863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity.
    Metzler KD; Fuchs TA; Nauseef WM; Reumaux D; Roesler J; Schulze I; Wahn V; Papayannopoulos V; Zychlinsky A
    Blood; 2011 Jan; 117(3):953-9. PubMed ID: 20974672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taurine chloramine selectively regulates neutrophil degranulation through the inhibition of myeloperoxidase and upregulation of lactoferrin.
    Kim DG; Kwon YM; Kang IS; Kim C
    Amino Acids; 2020 Aug; 52(8):1191-1199. PubMed ID: 32865666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse stimuli engage different neutrophil extracellular trap pathways.
    Kenny EF; Herzig A; Krüger R; Muth A; Mondal S; Thompson PR; Brinkmann V; Bernuth HV; Zychlinsky A
    Elife; 2017 Jun; 6():. PubMed ID: 28574339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of NET formation in vitro and in vivo by flow cytometry.
    Masuda S; Shimizu S; Matsuo J; Nishibata Y; Kusunoki Y; Hattanda F; Shida H; Nakazawa D; Tomaru U; Atsumi T; Ishizu A
    Cytometry A; 2017 Aug; 91(8):822-829. PubMed ID: 28715618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutrophil NET formation is regulated from the inside by myeloperoxidase-processed reactive oxygen species.
    Björnsdottir H; Welin A; Michaëlsson E; Osla V; Berg S; Christenson K; Sundqvist M; Dahlgren C; Karlsson A; Bylund J
    Free Radic Biol Med; 2015 Dec; 89():1024-35. PubMed ID: 26459032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.