BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3010654)

  • 1. Changes in energy metabolism following roentgen irradiation of in vivo growing Ehrlich ascites tumour cells studied by 31P magnetic resonance spectroscopy.
    Skog S; Nordell B; Ericsson A; Tribukait B; Nishida T
    Acta Radiol Oncol; 1986; 25(1):63-9. PubMed ID: 3010654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 31P-NMR-spectroscopy measurements of energy metabolism of in vivo growing ascites tumours following addition of glucose.
    Skog S; Ericsson A; Nordell B; Nishida T; Tribukait B
    Acta Oncol; 1989; 28(2):277-81. PubMed ID: 2736118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy metabolism and ATP turnover time during the cell cycle in roentgen irradiated Ehrlich ascites tumour cells.
    Skog S; Tribukait B; Sundius G
    Acta Radiol Oncol; 1983; 22(5):369-79. PubMed ID: 6320595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 31P nuclear magnetic resonance studies of Ehrlich ascites tumor cells.
    Navon G; Ogawa S; Shulman RG; Yamane T
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):87-91. PubMed ID: 13372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiotherapeutic response of Ehrlich ascites tumor cells perfused in agarose gel threads and implanted in mice. A 31P MR spectroscopy study.
    Sharma RK; Jain V
    Strahlenther Onkol; 2001 Apr; 177(4):212-9. PubMed ID: 11370557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of tumor radiotherapy. Part VI: Modification of tumor glucose metabolism for increasing the bioavailability of 2-deoxy-D-glucose (2-DG) in a murine tumor model.
    Sharma RK; Singh S; Degaonkar M; Raghunathan P; Maitra A; Jain V
    Strahlenther Onkol; 2000 Mar; 176(3):135-43. PubMed ID: 10742835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo NMR spectroscopic studies on the bioenergetic changes induced by metabolic modulators in Ehrlich ascites tumour cells.
    Sharma RK; Hanssum H; Jain V
    Indian J Biochem Biophys; 1996 Apr; 33(2):122-30. PubMed ID: 8754623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 31P NMR in vivo study of the acute effects of different doses of gamma-radiation on rat brain phosphate metabolism.
    Semenova NA; Yushmanov VE; Konradov AA
    NMR Biomed; 1994 Aug; 7(5):203-8. PubMed ID: 7848809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inorganic phosphate and energy charge compartmentation in Ehrlich ascites tumour cells in the presence of glucose and/or glutamine.
    Medina MA; Quesada AR; Márquez FJ; Sánchez-Jiménez F; Núñez de Castro I
    Biochem Int; 1988 Apr; 16(4):713-8. PubMed ID: 3390197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hematoporphyrin derivatives potentiate the radiosensitizing effects of 2-deoxy-D-glucose in cancer cells.
    Dwarakanath BS; Adhikari JS; Jain V
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(5):1125-33. PubMed ID: 10192364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Irradiation induced cell death as related to cell cycle.
    Skog S; Tribukait B
    Acta Radiol Oncol; 1985; 24(1):87-93. PubMed ID: 2984908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular distribution of adenine nucleotides in two Ehrlich cell lines metabolizing glucose.
    Medina MA; Sánchez-Jiménez F; Núñez de Castro I
    Biol Chem Hoppe Seyler; 1990 Jul; 371(7):625-9. PubMed ID: 2222861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [THE INFLUENCE OF GLUCOSE ON THE PHOSPHORYLATION OF 2-DEOXY-D-GLUCOSE AND THE ADENINE NUCLEOTIDE COMPOSITION OF EHRLICH ASCITES CARCINOMA CELLS].
    LETNANSKY K
    Biochem Z; 1964 Dec; 341():74-84. PubMed ID: 14339655
    [No Abstract]   [Full Text] [Related]  

  • 15. 31P and 13C NMR spectroscopic study of wild type and multidrug resistant Ehrlich ascites tumor cells.
    Rasmussen J; Hansen LL; Friche E; Jaroszewski JW
    Oncol Res; 1993; 5(3):119-26. PubMed ID: 8260748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of methotrexate and of environmental factors on glycolysis and metabolic energy state in cultured Ehrlich ascites carcinoma cells.
    Kaminskas E; Nussey AC
    Cancer Res; 1978 Sep; 38(9):2989-96. PubMed ID: 28179
    [No Abstract]   [Full Text] [Related]  

  • 17. Proliferation, macromolecular synthesis and energy metabolism of in vitro grown Ehrlich ascites tumor cells after inhibition of ATP-ADP translocation by atractyloside.
    Pick-Kober KH; Schneider F
    Eur J Cell Biol; 1984 Jul; 34(2):323-9. PubMed ID: 6090145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic pathways in Ehrlich ascites tumor cells recovering from a low bioenergetic status.
    Dell'Antone P
    FEBS Lett; 1994 Aug; 350(2-3):183-6. PubMed ID: 8070560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive 31P NMR probes of free Mg2+, MgATP, and MgADP in intact Ehrlich ascites tumor cells.
    Gupta RK; Yushok WD
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2487-91. PubMed ID: 6930646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic phosphate in Ehrlich ascites tumor cells and its distribution across the cell membrane.
    Simonsen LO; Cornelius F
    Biochim Biophys Acta; 1978 Aug; 511(2):213-23. PubMed ID: 567066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.