These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars. Zhang Q; Large N; Wang H ACS Appl Mater Interfaces; 2014 Oct; 6(19):17255-67. PubMed ID: 25222940 [TBL] [Abstract][Full Text] [Related]
10. Formation of self-assembled gold nanoparticle supercrystals with facet-dependent surface plasmonic coupling. Bian K; Schunk H; Ye D; Hwang A; Luk TS; Li R; Wang Z; Fan H Nat Commun; 2018 Jun; 9(1):2365. PubMed ID: 29915321 [TBL] [Abstract][Full Text] [Related]
11. Two-dimensional gold trisoctahedron nanoparticle superlattice sheets: self-assembly, characterization and immunosensing applications. Dong D; Yap LW; Smilgies DM; Si KJ; Shi Q; Cheng W Nanoscale; 2018 Mar; 10(11):5065-5071. PubMed ID: 29503999 [TBL] [Abstract][Full Text] [Related]
12. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Zheng P; Cushing SK; Suri S; Wu N Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930 [TBL] [Abstract][Full Text] [Related]
13. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects. Nikitin AG; Kabashin AV; Dallaporta H Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740 [TBL] [Abstract][Full Text] [Related]
14. Plasmonic Surface Lattice Resonances: Theory and Computation. Cherqui C; Bourgeois MR; Wang D; Schatz GC Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203 [TBL] [Abstract][Full Text] [Related]
15. Generalization of Self-Assembly Toward Differently Shaped Colloidal Nanoparticles for Plasmonic Superlattices. Charconnet M; Korsa MT; Petersen S; Plou J; Hanske C; Adam J; Seifert A Small Methods; 2023 Apr; 7(4):e2201546. PubMed ID: 36807876 [TBL] [Abstract][Full Text] [Related]
16. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays. Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896 [TBL] [Abstract][Full Text] [Related]
17. Super-Radiant SERS Enhancement by Plasmonic Particle Gratings. Seçkin S; Singh P; Jaiswal A; König TAF ACS Appl Mater Interfaces; 2023 Sep; 15(36):43124-43134. PubMed ID: 37665350 [TBL] [Abstract][Full Text] [Related]
18. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances. Sharma Y; Dhawan A Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249 [TBL] [Abstract][Full Text] [Related]
19. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films. Volk K; Fitzgerald JPS; Karg M ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839 [TBL] [Abstract][Full Text] [Related]
20. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates. Wang S; Tay LL; Liu H Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]