These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 30106560)

  • 41. New high capacity cathode materials for rechargeable Li-ion batteries: vanadate-borate glasses.
    Afyon S; Krumeich F; Mensing C; Borgschulte A; Nesper R
    Sci Rep; 2014 Nov; 4():7113. PubMed ID: 25408200
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of Particle Size on Mg
    Chen W; Zhan X; Luo B; Ou Z; Shih PC; Yao L; Pidaparthy S; Patra A; An H; Braun PV; Stephens RM; Yang H; Zuo JM; Chen Q
    Nano Lett; 2019 Jul; 19(7):4712-4720. PubMed ID: 31251071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ SEM study of lithium intercalation in individual V2O5 nanowires.
    Strelcov E; Cothren J; Leonard D; Borisevich AY; Kolmakov A
    Nanoscale; 2015 Feb; 7(7):3022-7. PubMed ID: 25600354
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lattice-distorted lithiation behavior of a square phase Janus MoSSe monolayer for electrode applications.
    Tang X; Ye H; Liu W; Liu Y; Guo Z; Wang M
    Nanoscale Adv; 2021 May; 3(10):2902-2910. PubMed ID: 36134199
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li(+) Diffusion Pathway.
    Tian J; Su Y; Wu F; Xu S; Chen F; Chen R; Li Q; Li J; Sun F; Chen S
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):582-7. PubMed ID: 26601895
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigation of the Na Intercalation Mechanism into Nanosized V2O5/C Composite Cathode Material for Na-Ion Batteries.
    Ali G; Lee JH; Oh SH; Cho BW; Nam KW; Chung KY
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6032-9. PubMed ID: 26889957
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heterogeneous TiO
    Kurttepeli M; Deng S; Mattelaer F; Cott DJ; Vereecken P; Dendooven J; Detavernier C; Bals S
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8055-8064. PubMed ID: 28199079
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes.
    Oleshko VP; Lam T; Ruzmetov D; Haney P; Lezec HJ; Davydov AV; Krylyuk S; Cumings J; Talin AA
    Nanoscale; 2014 Oct; 6(20):11756-68. PubMed ID: 25157420
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries.
    Tepavcevic S; Liu Y; Zhou D; Lai B; Maser J; Zuo X; Chan H; Král P; Johnson CS; Stamenkovic V; Markovic NM; Rajh T
    ACS Nano; 2015 Aug; 9(8):8194-205. PubMed ID: 26169073
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Li-ion diffusion in the equilibrium nanomorphology of spinel Li(4+x)Ti(5)O(12).
    Wagemaker M; van Eck ER; Kentgens AP; Mulder FM
    J Phys Chem B; 2009 Jan; 113(1):224-30. PubMed ID: 19118486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lithium versus Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy Storage.
    Stoyanova R; Koleva V; Stoyanova A
    Chem Rec; 2019 Feb; 19(2-3):474-501. PubMed ID: 30117651
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Correlating Lithium Hydroxyl Accumulation with Capacity Retention in V2O5 Aerogel Cathodes.
    Wangoh LW; Huang Y; Jezorek RL; Kehoe AB; Watson GW; Omenya F; Quackenbush NF; Chernova NA; Whittingham MS; Piper LF
    ACS Appl Mater Interfaces; 2016 May; 8(18):11532-8. PubMed ID: 27104947
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Atomic resolution observation of conversion-type anode RuO₂ during the first electrochemical lithiation.
    Mao M; Nie A; Liu J; Wang H; Mao SX; Wang Q; Li K; Zhang XX
    Nanotechnology; 2015 Mar; 26(12):125404. PubMed ID: 25742426
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Size-Controlled Intercalation-to-Conversion Transition in Lithiation of Transition-Metal Chalcogenides-NbSe3.
    Luo L; Zhao B; Xiang B; Wang CM
    ACS Nano; 2016 Jan; 10(1):1249-55. PubMed ID: 26593677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In Situ Encapsulation of the Nanoscale Er
    Zhang S; Gu H; Tang T; Du W; Gao M; Liu Y; Jian D; Pan H
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33863-33875. PubMed ID: 28892624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries.
    Wang HE; Chen DS; Cai Y; Zhang RL; Xu JM; Deng Z; Zheng XF; Li Y; Bello I; Su BL
    J Colloid Interface Sci; 2014 Mar; 418():74-80. PubMed ID: 24461820
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries.
    Qiu B; Yin C; Xia Y; Liu Z
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3661-3666. PubMed ID: 28094919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temperature-Dependent Lithium-Ion Diffusion and Activation Energy of Li
    Yang S; Yan B; Wu J; Lu L; Zeng K
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):13999-14005. PubMed ID: 28388026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phase evolution and structural modulation during in situ lithiation of MoS
    Ghosh C; Singh MK; Parida S; Janish MT; Dobley A; Dongare AM; Carter CB
    Sci Rep; 2021 Apr; 11(1):9014. PubMed ID: 33907244
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.
    Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.