BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30106714)

  • 1. Pelvic Organ Segmentation Using Distinctive Curve Guided Fully Convolutional Networks.
    He K; Cao X; Shi Y; Nie D; Gao Y; Shen D
    IEEE Trans Med Imaging; 2018 Aug; ():. PubMed ID: 30106714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pelvic Organ Segmentation Using Distinctive Curve Guided Fully Convolutional Networks.
    He K; Cao X; Shi Y; Nie D; Gao Y; Shen D
    IEEE Trans Med Imaging; 2019 Feb; 38(2):585-595. PubMed ID: 30176583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.
    Wang S; He K; Nie D; Zhou S; Gao Y; Shen D
    Med Image Anal; 2019 May; 54():168-178. PubMed ID: 30928830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CNN-based hierarchical coarse-to-fine segmentation of pelvic CT images for prostate cancer radiotherapy.
    Sultana S; Robinson A; Song DY; Lee J
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11315():. PubMed ID: 32341620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automated multiorgan segmentation of female pelvic magnetic resonance images with coarse-to-fine convolutional neural network.
    Zabihollahy F; Viswanathan AN; Schmidt EJ; Morcos M; Lee J
    Med Phys; 2021 Nov; 48(11):7028-7042. PubMed ID: 34609756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic multi-organ segmentation in computed tomography images using hierarchical convolutional neural network.
    Sultana S; Robinson A; Song DY; Lee J
    J Med Imaging (Bellingham); 2020 Sep; 7(5):055001. PubMed ID: 33102622
    [No Abstract]   [Full Text] [Related]  

  • 7. SEMI-SUPERVISED LEARNING FOR PELVIC MR IMAGE SEGMENTATION BASED ON MULTI-TASK RESIDUAL FULLY CONVOLUTIONAL NETWORKS.
    Feng Z; Nie D; Wang L; Shen D
    Proc IEEE Int Symp Biomed Imaging; 2018 Apr; 2018():885-888. PubMed ID: 30344892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boundary Coding Representation for Organ Segmentation in Prostate Cancer Radiotherapy.
    Wang S; Liu M; Lian J; Shen D
    IEEE Trans Med Imaging; 2021 Jan; 40(1):310-320. PubMed ID: 32956051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests.
    Gao Y; Shao Y; Lian J; Wang AZ; Chen RC; Shen D
    IEEE Trans Med Imaging; 2016 Jun; 35(6):1532-43. PubMed ID: 26800531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cascaded cross-attention transformers and convolutional neural networks for multi-organ segmentation in male pelvic computed tomography.
    Pemmaraju R; Kim G; Mekki L; Song DY; Lee J
    J Med Imaging (Bellingham); 2024 Mar; 11(2):024009. PubMed ID: 38595327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-task edge-recalibrated network for male pelvic multi-organ segmentation on CT images.
    Tong N; Gou S; Chen S; Yao Y; Yang S; Cao M; Kishan A; Sheng K
    Phys Med Biol; 2021 Jan; 66(3):035001. PubMed ID: 33197901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy.
    Fu Y; Lei Y; Wang T; Tian S; Patel P; Jani AB; Curran WJ; Liu T; Yang X
    Med Phys; 2020 Aug; 47(8):3415-3422. PubMed ID: 32323330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Male pelvic multi-organ segmentation using token-based transformer Vnet.
    Pan S; Lei Y; Wang T; Wynne J; Chang CW; Roper J; Jani AB; Patel P; Bradley JD; Liu T; Yang X
    Phys Med Biol; 2022 Oct; 67(20):. PubMed ID: 36170872
    [No Abstract]   [Full Text] [Related]  

  • 17. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STRAINet: Spatially Varying sTochastic Residual AdversarIal Networks for MRI Pelvic Organ Segmentation.
    Nie D; Wang L; Gao Y; Lian J; Shen D
    IEEE Trans Neural Netw Learn Syst; 2019 May; 30(5):1552-1564. PubMed ID: 30307879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Male pelvic CT multi-organ segmentation using synthetic MRI-aided dual pyramid networks.
    Lei Y; Wang T; Tian S; Fu Y; Patel P; Jani AB; Curran WJ; Liu T; Yang X
    Phys Med Biol; 2021 Apr; 66(8):. PubMed ID: 33780918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.