These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30106912)

  • 1. Controllable trapping and releasing of nanoparticles by a standing wave on optical waveguides.
    An R; Wang G; Ji W; Jiao W; Jiang M; Chang Y; Xu X; Zou N; Zhang X
    Opt Lett; 2018 Aug; 43(16):3901-3904. PubMed ID: 30106912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switching of nanoparticles in large-scale hybrid electro-optofluidics integration.
    Jiao W; Wang G; Ying Z; Zou Y; Ho HP; Sun T; Huang Y; Zhang X
    Opt Lett; 2016 Jun; 41(11):2652-5. PubMed ID: 27244437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-chip optical trapping of extracellular vesicles using box-shaped composite SiO
    Loozen GB; Caro J
    Opt Express; 2018 Oct; 26(21):26985-27000. PubMed ID: 30469775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable optofluidic sorting and manipulation on micro-ring resonators from a statistics perspective.
    Xu W; Wang Y; Jiao W; Wang F; Xu X; Jiang M; Ho HP; Wang G
    Opt Lett; 2019 Jul; 44(13):3226-3229. PubMed ID: 31259927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal.
    van Leest T; Caro J
    Lab Chip; 2013 Nov; 13(22):4358-65. PubMed ID: 24057009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-optical switching of a single wavelength in a silicon-based ring-assisted Mach-Zehnder interferometer.
    Xiong Y; Ye WN
    Appl Opt; 2012 Nov; 51(32):7788-93. PubMed ID: 23142891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possible mechanisms of switching in symmetrical two-ports based on 2D photonic crystals with magneto-optical resonators.
    Dmitriev V; Portela G; Zimmer D
    Opt Lett; 2013 Oct; 38(20):4040-3. PubMed ID: 24321916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable nanophotonic array traps with enhanced force and stability.
    Ye F; Soltani M; Inman JT; Wang MD
    Opt Express; 2017 Apr; 25(7):7907-7918. PubMed ID: 28380908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.
    Ye F; Badman RP; Inman JT; Soltani M; Killian JL; Wang MD
    Nano Lett; 2016 Oct; 16(10):6661-6667. PubMed ID: 27689302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanophotonic trapping for precise manipulation of biomolecular arrays.
    Soltani M; Lin J; Forties RA; Inman JT; Saraf SN; Fulbright RM; Lipson M; Wang MD
    Nat Nanotechnol; 2014 Jun; 9(6):448-52. PubMed ID: 24776649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable plasmonic force switch based on graphene nano-ring resonator for nanomanipulation.
    Abbasi MM; Darbari S; Moravvej-Farshi MK
    Opt Express; 2019 Sep; 27(19):26648-26660. PubMed ID: 31674541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-optical conveyor belt with waveguide-coupled excitation.
    Wang G; Ying Z; Ho HP; Huang Y; Zou N; Zhang X
    Opt Lett; 2016 Feb; 41(3):528-31. PubMed ID: 26907415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Trap Stiffness Microcylinders for Nanophotonic Trapping.
    Badman RP; Ye F; Caravan W; Wang MD
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25074-25080. PubMed ID: 31274286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface transport and stable trapping of particles and cells by an optical waveguide loop.
    Hellesø OG; Løvhaugen P; Subramanian AZ; Wilkinson JS; Ahluwalia BS
    Lab Chip; 2012 Sep; 12(18):3436-40. PubMed ID: 22814473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability analysis of optofluidic transport on solid-core waveguiding structures.
    Yang AH; Erickson D
    Nanotechnology; 2008 Jan; 19(4):045704. PubMed ID: 21817521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standing waves in fiber-optic interferometers.
    de Haan V; Santbergen R; Tijssen M; Zeman M
    Appl Opt; 2011 Oct; 50(29):5674-87. PubMed ID: 22015361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Trapping and Manipulating with a Silica Microring Resonator in a Self-Locked Scheme.
    Ho VWL; Chang Y; Liu Y; Zhang C; Li Y; Davidson RR; Little BE; Wang G; Chu ST
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32075346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable optical trapping based on optical binding forces.
    Grzegorczyk TM; Kemp BA; Kong JA
    Phys Rev Lett; 2006 Mar; 96(11):113903. PubMed ID: 16605823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of micro-particles through optical interference patterns generated by integrated photonic devices.
    Hsu LC; Chen TC; Yang YT; Huang CY; Shen DW; Chen YT; Lee MC
    Lab Chip; 2013 Mar; 13(6):1151-5. PubMed ID: 23364290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.