These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nanostructure enabled lower on-state resistance and longer lock-on time GaAs photoconductive semiconductor switches. Liu R; Shang A; Chen CJ; Lee YG; Yin S Opt Lett; 2021 Feb; 46(4):825-828. PubMed ID: 33577536 [TBL] [Abstract][Full Text] [Related]
3. Effects of trigger laser pulse width on the jitter time of GaAs photoconductive semiconductor switch. Shi W; Gui H; Zhang L; Ma C; Li M; Xu M; Wang L Opt Lett; 2013 Jul; 38(13):2330-2. PubMed ID: 23811918 [TBL] [Abstract][Full Text] [Related]
4. Generation of an ultra-short electrical pulse with width shorter than the excitation laser. Shi W; Wang S; Ma C; Xu M Sci Rep; 2016 Jun; 6():27577. PubMed ID: 27273512 [TBL] [Abstract][Full Text] [Related]
5. Influence of the incident laser pulse energy on jitter time of GaAs photoconductive semiconductor switches. Shi W; Gui HM; Zhang L; Li MX; Ma C; Wang LY; Jiang H Opt Lett; 2013 Nov; 38(21):4339-41. PubMed ID: 24177088 [TBL] [Abstract][Full Text] [Related]
6. Synchronization of two GaAs photoconductive semiconductor switches triggered by two laser diodes. Xu M; Bian K; Ma C; Jia H; An X; Shi W Opt Lett; 2016 Sep; 41(18):4387-9. PubMed ID: 27628404 [TBL] [Abstract][Full Text] [Related]
7. All solid-state high power microwave source with high repetition frequency. Bragg JW; Sullivan WW; Mauch D; Neuber AA; Dickens JC Rev Sci Instrum; 2013 May; 84(5):054703. PubMed ID: 23742571 [TBL] [Abstract][Full Text] [Related]
8. Dependence of conduction characteristics on compensation type and lattice structure of SiC photoconductive semiconductor switches. Feng Z; Xiao L; Luan C; Li Y; Sha H; Li H; Xu X Appl Opt; 2021 Apr; 60(11):3182-3186. PubMed ID: 33983217 [TBL] [Abstract][Full Text] [Related]
9. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences. Reid M; Fedosejevs R Appl Opt; 2005 Jan; 44(1):149-53. PubMed ID: 15662896 [TBL] [Abstract][Full Text] [Related]
10. A 80 kV gas switch triggered by a 17 μJ fiber-optic laser. Wang Z; Sun F; Qiu A; Hu L; Yin J; Cong P; Jiang X; Wei H; Jiang H Rev Sci Instrum; 2020 May; 91(5):056104. PubMed ID: 32486737 [TBL] [Abstract][Full Text] [Related]
11. Femtosecond response of a free-standing LT-GaAs photoconductive switch. Zheng X; Xu Y; Sobolewski R; Adam R; Mikulics M; Siegel M; Kordos P Appl Opt; 2003 Mar; 42(9):1726-31. PubMed ID: 12665104 [TBL] [Abstract][Full Text] [Related]
12. Optical absorption and photocurrent enhancement in semi-insulating gallium arsenide by femtosecond laser pulse surface microstructuring. Zhao ZY; Song ZQ; Shi WZ; Zhao QZ Opt Express; 2014 May; 22(10):11654-9. PubMed ID: 24921287 [TBL] [Abstract][Full Text] [Related]
14. Photonic Crystal Circular Nanobeam Cavity Laser with Type-II GaSb/GaAs Quantum Rings as Gain Material. Lin HT; Hsu KS; Chang CC; Lin WH; Lin SY; Chang SW; Chang YC; Shih MH Sci Rep; 2020 Mar; 10(1):4757. PubMed ID: 32179783 [TBL] [Abstract][Full Text] [Related]
15. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches. Hu L; Su J; Ding Z; Hao Q; Fan Y; Liu C Rev Sci Instrum; 2016 Aug; 87(8):086107. PubMed ID: 27587178 [TBL] [Abstract][Full Text] [Related]
16. Generation of 1-ps infrared pulses at 10.6 microm by use of low-temperature-grown GaAs as an optical semiconductor switch. Elezzabi AY; Meyer J; Hughes MK; Johnson SR Opt Lett; 1994 Jun; 19(12):898-900. PubMed ID: 19844481 [TBL] [Abstract][Full Text] [Related]
17. Tattoo removal with the Q-switched ruby laser and the Q-switched Nd:YAGlaser: a comparative study. Levine VJ; Geronemus RG Cutis; 1995 May; 55(5):291-6. PubMed ID: 7614841 [TBL] [Abstract][Full Text] [Related]
19. Pulsed characterization of a UV LED for pulsed power applications on a silicon carbide photoconductive semiconductor switch. Wilson N; Mauch D; Meyers V; Feathers S; Dickens J; Neuber A Rev Sci Instrum; 2017 Aug; 88(8):085109. PubMed ID: 28863629 [TBL] [Abstract][Full Text] [Related]
20. Switching jitter of avalanche gallium arsenide photoconductive semiconductor switch influenced by multiple avalanche domains. Chen H; Wei J; Sun Q; Wang L; Li S Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38270919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]