These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30106919)

  • 1. Ruby fluorescence-enabled ultralong lock-on time high-gain gallium arsenic photoconductive semiconductor switch.
    Chao JH; Zhu W; Chen CJ; Lee YG; Shang A; Yin S; Hoffman RC
    Opt Lett; 2018 Aug; 43(16):3929-3932. PubMed ID: 30106919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructure enabled lower on-state resistance and longer lock-on time GaAs photoconductive semiconductor switches.
    Liu R; Shang A; Chen CJ; Lee YG; Yin S
    Opt Lett; 2021 Feb; 46(4):825-828. PubMed ID: 33577536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of trigger laser pulse width on the jitter time of GaAs photoconductive semiconductor switch.
    Shi W; Gui H; Zhang L; Ma C; Li M; Xu M; Wang L
    Opt Lett; 2013 Jul; 38(13):2330-2. PubMed ID: 23811918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of an ultra-short electrical pulse with width shorter than the excitation laser.
    Shi W; Wang S; Ma C; Xu M
    Sci Rep; 2016 Jun; 6():27577. PubMed ID: 27273512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the incident laser pulse energy on jitter time of GaAs photoconductive semiconductor switches.
    Shi W; Gui HM; Zhang L; Li MX; Ma C; Wang LY; Jiang H
    Opt Lett; 2013 Nov; 38(21):4339-41. PubMed ID: 24177088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of two GaAs photoconductive semiconductor switches triggered by two laser diodes.
    Xu M; Bian K; Ma C; Jia H; An X; Shi W
    Opt Lett; 2016 Sep; 41(18):4387-9. PubMed ID: 27628404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All solid-state high power microwave source with high repetition frequency.
    Bragg JW; Sullivan WW; Mauch D; Neuber AA; Dickens JC
    Rev Sci Instrum; 2013 May; 84(5):054703. PubMed ID: 23742571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of conduction characteristics on compensation type and lattice structure of SiC photoconductive semiconductor switches.
    Feng Z; Xiao L; Luan C; Li Y; Sha H; Li H; Xu X
    Appl Opt; 2021 Apr; 60(11):3182-3186. PubMed ID: 33983217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative comparison of terahertz emission from (100) InAs surfaces and a GaAs large-aperture photoconductive switch at high fluences.
    Reid M; Fedosejevs R
    Appl Opt; 2005 Jan; 44(1):149-53. PubMed ID: 15662896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 80 kV gas switch triggered by a 17 μJ fiber-optic laser.
    Wang Z; Sun F; Qiu A; Hu L; Yin J; Cong P; Jiang X; Wei H; Jiang H
    Rev Sci Instrum; 2020 May; 91(5):056104. PubMed ID: 32486737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond response of a free-standing LT-GaAs photoconductive switch.
    Zheng X; Xu Y; Sobolewski R; Adam R; Mikulics M; Siegel M; Kordos P
    Appl Opt; 2003 Mar; 42(9):1726-31. PubMed ID: 12665104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical absorption and photocurrent enhancement in semi-insulating gallium arsenide by femtosecond laser pulse surface microstructuring.
    Zhao ZY; Song ZQ; Shi WZ; Zhao QZ
    Opt Express; 2014 May; 22(10):11654-9. PubMed ID: 24921287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon irradiated semi insulating GaAs for photoconductive terahertz pulse detection.
    Singh A; Pal S; Surdi H; Prabhu SS; Mathimalar S; Nanal V; Pillay RG; Döhler GH
    Opt Express; 2015 Mar; 23(5):6656-61. PubMed ID: 25836882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic Crystal Circular Nanobeam Cavity Laser with Type-II GaSb/GaAs Quantum Rings as Gain Material.
    Lin HT; Hsu KS; Chang CC; Lin WH; Lin SY; Chang SW; Chang YC; Shih MH
    Sci Rep; 2020 Mar; 10(1):4757. PubMed ID: 32179783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.
    Hu L; Su J; Ding Z; Hao Q; Fan Y; Liu C
    Rev Sci Instrum; 2016 Aug; 87(8):086107. PubMed ID: 27587178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of 1-ps infrared pulses at 10.6 microm by use of low-temperature-grown GaAs as an optical semiconductor switch.
    Elezzabi AY; Meyer J; Hughes MK; Johnson SR
    Opt Lett; 1994 Jun; 19(12):898-900. PubMed ID: 19844481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tattoo removal with the Q-switched ruby laser and the Q-switched Nd:YAGlaser: a comparative study.
    Levine VJ; Geronemus RG
    Cutis; 1995 May; 55(5):291-6. PubMed ID: 7614841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-driven semiconductor switch for generating nanosecond pulses from a megawatt gyrotron.
    Picard JF; Schaub SC; Rosenzweig G; Stephens JC; Shapiro MA; Temkin RJ
    Appl Phys Lett; 2019 Apr; 114(16):164102. PubMed ID: 32127718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsed characterization of a UV LED for pulsed power applications on a silicon carbide photoconductive semiconductor switch.
    Wilson N; Mauch D; Meyers V; Feathers S; Dickens J; Neuber A
    Rev Sci Instrum; 2017 Aug; 88(8):085109. PubMed ID: 28863629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switching jitter of avalanche gallium arsenide photoconductive semiconductor switch influenced by multiple avalanche domains.
    Chen H; Wei J; Sun Q; Wang L; Li S
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38270919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.