These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30106923)

  • 1. Dynamic tuning of the Q factor in a photonic crystal nanocavity through photonic transitions.
    Wang B; Wu JF; Li C; Li ZY
    Opt Lett; 2018 Aug; 43(16):3945-3948. PubMed ID: 30106923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning.
    Tanabe T; Notomi M; Taniyama H; Kuramochi E
    Phys Rev Lett; 2009 Jan; 102(4):043907. PubMed ID: 19257423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic control of the Q factor in a photonic crystal nanocavity.
    Tanaka Y; Upham J; Nagashima T; Sugiya T; Asano T; Noda S
    Nat Mater; 2007 Nov; 6(11):862-5. PubMed ID: 17767163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wideband slow short-pulse propagation in one-thousand slantingly coupled L3 photonic crystal nanocavities.
    Kuramochi E; Matsuda N; Nozaki K; Park AHK; Takesue H; Notomi M
    Opt Express; 2018 Apr; 26(8):9552-9564. PubMed ID: 29715904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broad-bandwidth, high-efficiency multiwavelength conversion in a high-Q photonic crystal resonator.
    Wu JF; Li C
    Opt Lett; 2014 Sep; 39(18):5271-3. PubMed ID: 26466248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities.
    Chew X; Zhou G; Chau FS; Deng J; Tang X; Loke YC
    Opt Lett; 2010 Aug; 35(15):2517-9. PubMed ID: 20680043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Q photonic nanocavity in a two-dimensional photonic crystal.
    Akahane Y; Asano T; Song BS; Noda S
    Nature; 2003 Oct; 425(6961):944-7. PubMed ID: 14586465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broad-band, reversible nonreciprocal light transmission based on a single nanocavity.
    Li C; Wu SY; Wu JF
    Opt Express; 2019 Jun; 27(12):16530-16539. PubMed ID: 31252877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electro-optic adiabatic wavelength shifting and Q switching demonstrated using a p-i-n integrated photonic crystal nanocavity.
    Tanabe T; Kuramochi E; Taniyama H; Notomi M
    Opt Lett; 2010 Dec; 35(23):3895-7. PubMed ID: 21124557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse capture without carrier absorption in dynamic Q photonic crystal nanocavities.
    Upham J; Inoue H; Tanaka Y; Stumpf W; Kojima K; Asano T; Noda S
    Opt Express; 2014 Jun; 22(13):15459-66. PubMed ID: 24977805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip non-uniformly spaced multi-channel microwave photonic signal processor based on an ultrahigh-Q multimode micro-disk resonator.
    Wang B; Cheng Y; Yu W; Hong X; Zhang W
    Opt Express; 2023 Jul; 31(14):23309-23324. PubMed ID: 37475418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays.
    Matsuda N; Kuramochi E; Takesue H; Notomi M
    Opt Lett; 2014 Apr; 39(8):2290-3. PubMed ID: 24978975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control.
    Upham J; Tanaka Y; Asano T; Noda S
    Opt Express; 2008 Dec; 16(26):21721-30. PubMed ID: 19104604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity.
    Jeon SW; Han JK; Song BS; Noda S
    Opt Express; 2010 Aug; 18(18):19361-6. PubMed ID: 20940831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically induced indirect photonic transitions in a slow light photonic crystal waveguide.
    Castellanos Muñoz M; Petrov AY; O'Faolain L; Li J; Krauss TF; Eich M
    Phys Rev Lett; 2014 Feb; 112(5):053904. PubMed ID: 24580594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-volt silicon photonic crystal nanocavity modulator with indium oxide gate.
    Li E; Gao Q; Liverman S; Wang AX
    Opt Lett; 2018 Sep; 43(18):4429-4432. PubMed ID: 30211882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh-Q nanocavities written with a nanoprobe.
    Yokoo A; Tanabe T; Kuramochi E; Notomi M
    Nano Lett; 2011 Sep; 11(9):3634-42. PubMed ID: 21806036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves.
    Lin TR; Lin CH; Hsu JC
    Sci Rep; 2015 Sep; 5():13782. PubMed ID: 26346448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconfigurable nanocavity formation in graphene-loaded Si photonic crystal structures.
    Chiba H; Notomi M
    Opt Express; 2019 Dec; 27(26):37952-37963. PubMed ID: 31878567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chip-scale integrated cavity-electro-optomechanics platform.
    Winger M; Blasius TD; Mayer Alegre TP; Safavi-Naeini AH; Meenehan S; Cohen J; Stobbe S; Painter O
    Opt Express; 2011 Dec; 19(25):24905-21. PubMed ID: 22273884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.