BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30107099)

  • 21. Single-cell technologies in reproductive immunology.
    Vazquez J; Ong IM; Stanic AK
    Am J Reprod Immunol; 2019 Sep; 82(3):e13157. PubMed ID: 31206899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using Visualization of
    Acuff NV; Linden J
    J Immunol; 2017 Jun; 198(11):4539-4546. PubMed ID: 28468972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Silico Methods for Studying T Cell Biology.
    Grzesik K; Eng K; Crauste F; Battaglia S
    Int Rev Cell Mol Biol; 2019; 342():265-304. PubMed ID: 30635092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mass Cytometry Analytical Approaches Reveal Cytokine-Induced Changes in Natural Killer Cells.
    Vendrame E; Fukuyama J; Strauss-Albee DM; Holmes S; Blish CA
    Cytometry B Clin Cytom; 2017 Jan; 92(1):57-67. PubMed ID: 27933717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Standardization of cryopreserved peripheral blood mononuclear cells through a resting process for clinical immunomonitoring--Development of an algorithm.
    Wang L; Hückelhoven A; Hong J; Jin N; Mani J; Chen BA; Schmitt M; Schmitt A
    Cytometry A; 2016 Mar; 89(3):246-58. PubMed ID: 26848928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis.
    Finak G; Frelinger J; Jiang W; Newell EW; Ramey J; Davis MM; Kalams SA; De Rosa SC; Gottardo R
    PLoS Comput Biol; 2014 Aug; 10(8):e1003806. PubMed ID: 25167361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computational approach for phenotypic comparisons of cell populations in high-dimensional cytometry data.
    Platon L; Pejoski D; Gautreau G; Targat B; Le Grand R; Beignon AS; Tchitchek N
    Methods; 2018 Jan; 132():66-75. PubMed ID: 28917725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Research Techniques Made Simple: Mass Cytometry Analysis Tools for Decrypting the Complexity of Biological Systems.
    Matos TR; Liu H; Ritz J
    J Invest Dermatol; 2017 May; 137(5):e43-e51. PubMed ID: 28411844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Meeting the Challenges of High-Dimensional Single-Cell Data Analysis in Immunology.
    Palit S; Heuser C; de Almeida GP; Theis FJ; Zielinski CE
    Front Immunol; 2019; 10():1515. PubMed ID: 31354705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep Profiling Human T Cell Heterogeneity by Mass Cytometry.
    Cheng Y; Newell EW
    Adv Immunol; 2016; 131():101-34. PubMed ID: 27235682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of High-Dimensional Phenotype Data Generated by Mass Cytometry or High-Dimensional Flow Cytometry.
    Cirovic B; Katzmarski N; Schlitzer A
    Methods Mol Biol; 2019; 1989():281-294. PubMed ID: 31077112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gating mass cytometry data by deep learning.
    Li H; Shaham U; Stanton KP; Yao Y; Montgomery RR; Kluger Y
    Bioinformatics; 2017 Nov; 33(21):3423-3430. PubMed ID: 29036374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational Analysis of High-Dimensional Mass Cytometry Data from Clinical Tissue Samples.
    Norton S; Kemp R
    Methods Mol Biol; 2019; 1989():295-307. PubMed ID: 31077113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges in the Multivariate Analysis of Mass Cytometry Data: The Effect of Randomization.
    Papoutsoglou G; Lagani V; Schmidt A; Tsirlis K; Cabrero DG; Tegnér J; Tsamardinos I
    Cytometry A; 2019 Nov; 95(11):1178-1190. PubMed ID: 31692248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Guide on Analyzing Flow Cytometry Data Using Clustering Methods and Nonlinear Dimensionality Reduction (tSNE or UMAP).
    Ujas TA; Obregon-Perko V; Stowe AM
    Methods Mol Biol; 2023; 2616():231-249. PubMed ID: 36715939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrafast clustering of single-cell flow cytometry data using FlowGrid.
    Ye X; Ho JWK
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):35. PubMed ID: 30953498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single cell immune profiling in transplantation research.
    Higdon LE; Schaffert S; Khatri P; Maltzman JS
    Am J Transplant; 2019 May; 19(5):1278-1287. PubMed ID: 30768832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The art of using t-SNE for single-cell transcriptomics.
    Kobak D; Berens P
    Nat Commun; 2019 Nov; 10(1):5416. PubMed ID: 31780648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unfold High-Dimensional Clouds for Exhaustive Gating of Flow Cytometry Data.
    Qiu P
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):1045-51. PubMed ID: 26357042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation.
    Mosmann TR; Naim I; Rebhahn J; Datta S; Cavenaugh JS; Weaver JM; Sharma G
    Cytometry A; 2014 May; 85(5):422-33. PubMed ID: 24532172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.