These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30107124)

  • 1. Photoinduced Enhanced Raman from Lithium Niobate on Insulator Template.
    Al-Shammari RM; Baghban MA; Al-Attar N; Gowen A; Gallo K; Rice JH; Rodriguez BJ
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30871-30878. PubMed ID: 30107124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-induced surface-enhanced Raman spectroscopy from a diphenylalanine peptide nanotube-metal nanoparticle template.
    Almohammed S; Zhang F; Rodriguez BJ; Rice JH
    Sci Rep; 2018 Mar; 8(1):3880. PubMed ID: 29497167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode.
    Wen R; Fang Y
    J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation.
    Han Y; Lupitskyy R; Chou TM; Stafford CM; Du H; Sukhishvili S
    Anal Chem; 2011 Aug; 83(15):5873-80. PubMed ID: 21644591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoactive Control of Surface-Enhanced Raman Scattering with Reduced Graphene Oxide in Gas Atmosphere.
    Zhou L; Pusey-Nazzaro L; Ren G; Chen L; Liu L; Zhang W; Yang L; Zhou J; Han J
    ACS Nano; 2022 Jan; 16(1):577-587. PubMed ID: 34927434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Step Fabrication of High-Throughput Surface-Enhanced Raman Scattering Substrates.
    Zeng Y; Du X; Gao B; Liu B; Xie Z; Gu Z
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4222-4232. PubMed ID: 29297223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun TiO₂ nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering.
    Zhao Y; Sun L; Xi M; Feng Q; Jiang C; Fong H
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5759-67. PubMed ID: 24689890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale Synergetic Effects on Ag-TiO
    Shondo J; Veziroglu S; Tjardts T; Sarwar TB; Mishra YK; Faupel F; Aktas OC
    Small; 2022 Dec; 18(50):e2203861. PubMed ID: 36135727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman lasing and soliton mode-locking in lithium niobate microresonators.
    Yu M; Okawachi Y; Cheng R; Wang C; Zhang M; Gaeta AL; Lončar M
    Light Sci Appl; 2020; 9():9. PubMed ID: 31969982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient silver particle layers on glass substrate synthesized by the sonochemical method for surface enhanced Raman spectroscopy purposes.
    Suchomel P; Prucek R; Černá K; Fargašová A; Panáček A; Gedanken A; Zbořil R; Kvítek L
    Ultrason Sonochem; 2016 Sep; 32():165-172. PubMed ID: 27150757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of DNA adducts using surface-enhanced Raman spectroscopy.
    Helmenstine A; Uziel M; Vo-Dinh T
    J Toxicol Environ Health; 1993; 40(2-3):195-202. PubMed ID: 8230295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially controlled SERS patterning using photoinduced disassembly of gelated gold nanoparticle aggregates.
    Park JS; Yoon JH; Yoon S
    Langmuir; 2010 Dec; 26(23):17808-11. PubMed ID: 21043462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.
    Huh S; Park J; Kim YS; Kim KS; Hong BH; Nam JM
    ACS Nano; 2011 Dec; 5(12):9799-806. PubMed ID: 22070659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel method for preparing controllable and stable silver particle films for surface-enhanced Raman scattering spectroscopy.
    Li X; Xu W; Jia H; Wang X; Zhao B; Li B; Ozaki Y
    Appl Spectrosc; 2004 Jan; 58(1):26-32. PubMed ID: 14727717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT study of adsorption site effect on surface-enhanced Raman scattering of neutral and charged pyridine-Ag4 complexes.
    Liu S; Zhao X; Li Y; Chen M; Sun M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(2):382-7. PubMed ID: 19321380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. W
    Li M; Fan X; Gao Y; Qiu T
    J Phys Chem Lett; 2019 Jul; 10(14):4038-4044. PubMed ID: 31265302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering.
    Xu S; Ji X; Xu W; Li X; Wang L; Bai Y; Zhao B; Ozaki Y
    Analyst; 2004 Jan; 129(1):63-8. PubMed ID: 14737585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering.
    Anema JR; Li JF; Yang ZL; Ren B; Tian ZQ
    Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():129-50. PubMed ID: 21370987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.