These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30107208)

  • 21. Detection of K-complexes and sleep spindles (DETOKS) using sparse optimization.
    Parekh A; Selesnick IW; Rapoport DM; Ayappa I
    J Neurosci Methods; 2015 Aug; 251():37-46. PubMed ID: 25956566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spindles are highly heritable as identified by different spindle detectors.
    Goldschmied JR; Lacourse K; Maislin G; Delfrate J; Gehrman P; Pack FM; Staley B; Pack AI; Younes M; Kuna ST; Warby SC
    Sleep; 2021 Apr; 44(4):. PubMed ID: 33165618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scoring accuracy of automated sleep staging from a bipolar electroocular recording compared to manual scoring by multiple raters.
    Stepnowsky C; Levendowski D; Popovic D; Ayappa I; Rapoport DM
    Sleep Med; 2013 Nov; 14(11):1199-207. PubMed ID: 24047533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A robust deep learning detector for sleep spindles and K-complexes: towards population norms.
    Tapia-Rivas NI; Estévez PA; Cortes-Briones JA
    Sci Rep; 2024 Jan; 14(1):263. PubMed ID: 38167626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood.
    McClain IJ; Lustenberger C; Achermann P; Lassonde JM; Kurth S; LeBourgeois MK
    Neural Plast; 2016; 2016():3670951. PubMed ID: 27110405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validating an automated sleep spindle detection algorithm using an individualized approach.
    Ray LB; Fogel SM; Smith CT; Peters KR
    J Sleep Res; 2010 Jun; 19(2):374-8. PubMed ID: 20149067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov Model.
    Ghimatgar H; Kazemi K; Helfroush MS; Aarabi A
    J Neurosci Methods; 2019 Aug; 324():108320. PubMed ID: 31228517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of cortical slow waves in the sleep EEG using a modified matching pursuit method with a restricted dictionary.
    Picot A; Whitmore H; Chapotot F
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2808-17. PubMed ID: 22868527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Visual Scoring of Sleep in Infants 0 to 2 Months of Age.
    Grigg-Damberger MM
    J Clin Sleep Med; 2016 Mar; 12(3):429-45. PubMed ID: 26951412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Massive online data annotation, crowdsourcing to generate high quality sleep spindle annotations from EEG data.
    Lacourse K; Yetton B; Mednick S; Warby SC
    Sci Data; 2020 Jun; 7(1):190. PubMed ID: 32561751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delay differential analysis for dynamical sleep spindle detection.
    Sampson AL; Lainscsek C; Gonzalez CE; Ulbert I; Devinsky O; Fabó D; Madsen JR; Halgren E; Cash SS; Sejnowski TJ
    J Neurosci Methods; 2019 Mar; 316():12-21. PubMed ID: 30707917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral and temporal characterization of sleep spindles-methodological implications.
    Gomez-Pilar J; Gutiérrez-Tobal GC; Poza J; Fogel S; Doyon J; Northoff G; Hornero R
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33618345
    [No Abstract]   [Full Text] [Related]  

  • 33. Evaluating and Improving Automatic Sleep Spindle Detection by Using Multi-Objective Evolutionary Algorithms.
    Liu MY; Huang A; Huang NE
    Front Hum Neurosci; 2017; 11():261. PubMed ID: 28572762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of γ and spindle-range power by slow oscillations in scalp sleep EEG of children.
    Piantoni G; Astill RG; Raymann RJ; Vis JC; Coppens JE; Van Someren EJ
    Int J Psychophysiol; 2013 Aug; 89(2):252-8. PubMed ID: 23403325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sleep spindle characteristics in adolescents.
    Goldstone A; Willoughby AR; de Zambotti M; Clark DB; Sullivan EV; Hasler BP; Franzen PL; Prouty DE; Colrain IM; Baker FC
    Clin Neurophysiol; 2019 Jun; 130(6):893-902. PubMed ID: 30981174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of a deep learning model for automatic scoring of periodic and non-periodic leg movements during sleep validated against multiple human experts.
    Carvelli L; Olesen AN; Brink-Kjær A; Leary EB; Peppard PE; Mignot E; Sørensen HBD; Jennum P
    Sleep Med; 2020 May; 69():109-119. PubMed ID: 32062037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating the use of line length for automatic sleep spindle detection.
    Imtiaz SA; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5024-7. PubMed ID: 25571121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleep-spindle identification on EEG signals from polysomnographie recordings using correntropy.
    Ulloa S; Estevez PA; Huijse P; Held CM; Perez CA; Chamorro R; Garrido M; Algarin C; Peirano P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3736-3739. PubMed ID: 28269102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep-spindle: An automated sleep spindle detection system for analysis of infant sleep spindles.
    Wei L; Ventura S; Ryan MA; Mathieson S; Boylan GB; Lowery M; Mooney C
    Comput Biol Med; 2022 Nov; 150():106096. PubMed ID: 36162199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DOSED: A deep learning approach to detect multiple sleep micro-events in EEG signal.
    Chambon S; Thorey V; Arnal PJ; Mignot E; Gramfort A
    J Neurosci Methods; 2019 Jun; 321():64-78. PubMed ID: 30946878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.