BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30107328)

  • 21. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.
    Rassoli A; Fatouraee N; Guidoin R
    Artif Organs; 2018 Jun; 42(6):630-639. PubMed ID: 29602267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A viscoelastic analysis of the P56 mouse brain under large-deformation dynamic indentation.
    MacManus DB; Pierrat B; Murphy JG; Gilchrist MD
    Acta Biomater; 2017 Jan; 48():309-318. PubMed ID: 27777117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscoelastic material model for the temporomandibular joint disc derived from dynamic shear tests or strain-relaxation tests.
    Koolstra JH; Tanaka E; Van Eijden TM
    J Biomech; 2007; 40(10):2330-4. PubMed ID: 17141788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical response of retrodiscal tissue in the temporomandibular joint under compression.
    Tanaka E; Del Pozo R; Sugiyama M; Tanne K
    J Oral Maxillofac Surg; 2002 May; 60(5):546-51. PubMed ID: 11988934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viscoelastic properties of tissue conditioners--stress relaxation test using Maxwell model analogy.
    Murata H; Shigeto N; Hamada T
    J Oral Rehabil; 1990 Jul; 17(4):365-75. PubMed ID: 2213332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stress relaxation behavior of tessellated cartilage from the jaws of blue sharks.
    Liu X; Dean MN; Youssefpour H; Summers AP; Earthman JC
    J Mech Behav Biomed Mater; 2014 Jan; 29():68-80. PubMed ID: 24055795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subcutaneous tissue mechanical behavior is linear and viscoelastic under uniaxial tension.
    Iatridis JC; Wu J; Yandow JA; Langevin HM
    Connect Tissue Res; 2003; 44(5):208-17. PubMed ID: 14660091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Viscoelastic characterization of rat cerebral cortex and type I collagen scaffolds for central nervous system tissue engineering.
    Elias PZ; Spector M
    J Mech Behav Biomed Mater; 2012 Aug; 12():63-73. PubMed ID: 22659367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation.
    Suh JK; Spilker RL
    J Biomech Eng; 1994 Feb; 116(1):1-9. PubMed ID: 8189703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fully non-linear hyper-viscoelastic modeling of skeletal muscle in compression.
    Wheatley BB; Pietsch RB; Haut Donahue TL; Williams LN
    Comput Methods Biomech Biomed Engin; 2016; 19(11):1181-9. PubMed ID: 26652761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of the time-strain superposition - Part II: Prediction of the frequency-dependent behaviour of brain tissue.
    Zupančič B
    J Mech Behav Biomed Mater; 2018 Oct; 86():325-335. PubMed ID: 30007181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical modeling and characterization of meniscus tissue using flat punch indentation and inverse finite element method.
    Seyfi B; Fatouraee N; Imeni M
    J Mech Behav Biomed Mater; 2018 Jan; 77():337-346. PubMed ID: 28965040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress relaxation microscopy: imaging local stress in cells.
    Moreno-Flores S; Benitez R; Vivanco MD; Toca-Herrera JL
    J Biomech; 2010 Jan; 43(2):349-54. PubMed ID: 19772964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A rate-controlled indentor for in vivo analysis of residual limb tissues.
    Pathak AP; Silver-Thorn MB; Thierfelder CA; Prieto TE
    IEEE Trans Rehabil Eng; 1998 Mar; 6(1):12-20. PubMed ID: 9535519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An instrumented tissue tester for measuring soft tissue property under the metatarsal heads in relation to metatarsophalangeal joint angle.
    Chen WM; Phyau-Wui Shim V; Park SB; Lee T
    J Biomech; 2011 Jun; 44(9):1801-4. PubMed ID: 21513940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A general approach for the microrheology of cancer cells by atomic force microscopy.
    Wang B; Lançon P; Bienvenu C; Vierling P; Di Giorgio C; Bossis G
    Micron; 2013 Jan; 44():287-97. PubMed ID: 22951283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The development and validation of a numerical integration method for non-linear viscoelastic modeling.
    Ramo NL; Puttlitz CM; Troyer KL
    PLoS One; 2018; 13(1):e0190137. PubMed ID: 29293558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.