BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 30107560)

  • 1. The impact of selective genotyping on the response to selection using single-step genomic best linear unbiased prediction.
    Howard JT; Rathje TA; Bruns CE; Wilson-Wells DF; Kachman SD; Spangler ML
    J Anim Sci; 2018 Nov; 96(11):4532-4542. PubMed ID: 30107560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of genotyping strategy on the accuracy of genomic prediction in simulated populations of purebred swine.
    Li X; Zhang Z; Liu X; Chen Y
    Animal; 2019 Sep; 13(9):1804-1810. PubMed ID: 30616709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of reducing the frequency of animals genotyped at higher density on imputation and prediction accuracies using ssGBLUP1.
    Sollero BP; Howard JT; Spangler ML
    J Anim Sci; 2019 Jul; 97(7):2780-2792. PubMed ID: 31115442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic prediction using pooled data in a single-step genomic best linear unbiased prediction framework.
    Baller JL; Kachman SD; Kuehn LA; Spangler ML
    J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32497209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bias in variance component estimation in swine crossbreeding schemes using selective genotyping and phenotyping strategies.
    See GM; Mote BE; Spangler ML
    J Anim Sci; 2021 Nov; 99(11):. PubMed ID: 34661671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boundaries for genotype, phenotype, and pedigree truncation in genomic evaluations in pigs.
    Bussiman F; Chen CY; Holl J; Bermann M; Legarra A; Misztal I; Lourenco D
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37584978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting effective starting point of genomic selection by divergent trends from best linear unbiased prediction and single-step genomic best linear unbiased prediction in pigs, beef cattle, and broilers.
    Abdollahi-Arpanahi R; Lourenco D; Misztal I
    J Anim Sci; 2021 Sep; 99(9):. PubMed ID: 34390341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imputation of non-genotyped F1 dams to improve genetic gain in swine crossbreeding programs.
    See GM; Fix JS; Schwab CR; Spangler ML
    J Anim Sci; 2022 May; 100(5):. PubMed ID: 35451025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic selection in a pig population including information from slaughtered full sibs of boars within a sib-testing program.
    Samorè AB; Buttazzoni L; Gallo M; Russo V; Fontanesi L
    Animal; 2015 May; 9(5):750-9. PubMed ID: 25510405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact and utility of shallow pedigree using single-step genomic BLUP for prediction of unbiased genomic breeding values.
    Gowane GR; Alex R; Mukherjee A; Vohra V
    Trop Anim Health Prod; 2022 Oct; 54(6):339. PubMed ID: 36210357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of clustering methods for cross-validation, choice of phenotypes, and genotyping strategies on the accuracy of genomic predictions.
    Baller JL; Howard JT; Kachman SD; Spangler ML
    J Anim Sci; 2019 Apr; 97(4):1534-1549. PubMed ID: 30721970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of selective genotyping strategies for prediction of breeding values in a population undergoing selection.
    Boligon AA; Long N; Albuquerque LG; Weigel KA; Gianola D; Rosa GJ
    J Anim Sci; 2012 Dec; 90(13):4716-22. PubMed ID: 23372045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective genotyping and phenotypic data inclusion strategies of crossbred progeny for combined crossbred and purebred selection in swine breeding.
    See GM; Mote BE; Spangler ML
    J Anim Sci; 2021 Mar; 99(3):. PubMed ID: 33560334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal strategies for the use of genomic selection in dairy cattle breeding programs.
    Wensch-Dorendorf M; Yin T; Swalve HH; König S
    J Dairy Sci; 2011 Aug; 94(8):4140-51. PubMed ID: 21787949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability of pedigree-based and genomic evaluations in selected populations.
    Gorjanc G; Bijma P; Hickey JM
    Genet Sel Evol; 2015 Aug; 47(1):65. PubMed ID: 26271246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotyping strategies for genomic selection in small dairy cattle populations.
    Jiménez-Montero JA; González-Recio O; Alenda R
    Animal; 2012 Aug; 6(8):1216-24. PubMed ID: 23217224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme.
    Tribout T; Larzul C; Phocas F
    Genet Sel Evol; 2013 Oct; 45(1):40. PubMed ID: 24127883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of genomic selection and genotyping strategy on estimation of variance components in animal models using different relationship matrices.
    Wang L; Janss LL; Madsen P; Henshall J; Huang CH; Marois D; Alemu S; Sørensen AC; Jensen J
    Genet Sel Evol; 2020 Jun; 52(1):31. PubMed ID: 32527317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossbreed evaluations in single-step genomic best linear unbiased predictor using adjusted realized relationship matrices.
    Lourenco DA; Tsuruta S; Fragomeni BO; Chen CY; Herring WO; Misztal I
    J Anim Sci; 2016 Mar; 94(3):909-19. PubMed ID: 27065253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.