BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

972 related articles for article (PubMed ID: 30107606)

  • 1. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.
    Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS
    Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of IVIM-DWI and 3D-ASL for differentiating true progression from pseudoprogression of Glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial.
    Liu ZC; Yan LF; Hu YC; Sun YZ; Tian Q; Nan HY; Yu Y; Sun Q; Wang W; Cui GB
    BMC Med Imaging; 2017 Feb; 17(1):10. PubMed ID: 28143434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI.
    Park JE; Kim HS; Jo Y; Yoo RE; Choi SH; Nam SJ; Kim JH
    Sci Rep; 2020 Mar; 10(1):4250. PubMed ID: 32144360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma.
    Park JE; Ham S; Kim HS; Park SY; Yun J; Lee H; Choi SH; Kim N
    Eur Radiol; 2021 May; 31(5):3127-3137. PubMed ID: 33128598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging.
    Chu HH; Choi SH; Ryoo I; Kim SC; Yeom JA; Shin H; Jung SC; Lee AL; Yoon TJ; Kim TM; Lee SH; Park CK; Kim JH; Sohn CH; Park SH; Kim IH
    Radiology; 2013 Dec; 269(3):831-40. PubMed ID: 23771912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of pseudoprogression in post-treatment glioblastoma using dynamic susceptibility contrast-derived oxygenation and microvascular transit time heterogeneity measures.
    Park JE; Kim HS; Kim N; Borra R; Mouridsen K; Hansen MB; Kim YH; Hong CK; Kim JH
    Eur Radiol; 2024 May; 34(5):3061-3073. PubMed ID: 37848773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation.
    Kang D; Park JE; Kim YH; Kim JH; Oh JY; Kim J; Kim Y; Kim ST; Kim HS
    Neuro Oncol; 2018 Aug; 20(9):1251-1261. PubMed ID: 29438500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma.
    Kim JY; Yoon MJ; Park JE; Choi EJ; Lee J; Kim HS
    Neuroradiology; 2019 Nov; 61(11):1261-1272. PubMed ID: 31289886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma.
    Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS
    Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Core Signaling Pathway by Using Diffusion- and Perfusion-based MRI Radiomics and Next-generation Sequencing in Isocitrate Dehydrogenase Wild-type Glioblastoma.
    Park JE; Kim HS; Park SY; Nam SJ; Chun SM; Jo Y; Kim JH
    Radiology; 2020 Feb; 294(2):388-397. PubMed ID: 31845844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between the Prebolus T1 Measurement and the Fixed T1 Value in Dynamic Contrast-Enhanced MR Imaging for the Differentiation of True Progression from Pseudoprogression in Glioblastoma Treated with Concurrent Radiation Therapy and Temozolomide Chemotherapy.
    Nam JG; Kang KM; Choi SH; Lim WH; Yoo RE; Kim JH; Yun TJ; Sohn CH
    AJNR Am J Neuroradiol; 2017 Dec; 38(12):2243-2250. PubMed ID: 29074633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis.
    Song YS; Choi SH; Park CK; Yi KS; Lee WJ; Yun TJ; Kim TM; Lee SH; Kim JH; Sohn CH; Park SH; Kim IH; Jahng GH; Chang KH
    Korean J Radiol; 2013; 14(4):662-72. PubMed ID: 23901325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiparametric imaging-based differentiation of lymphoma and glioblastoma: using T1-perfusion, diffusion, and susceptibility-weighted MRI.
    Saini J; Kumar Gupta P; Awasthi A; Pandey CM; Singh A; Patir R; Ahlawat S; Sadashiva N; Mahadevan A; Kumar Gupta R
    Clin Radiol; 2018 Nov; 73(11):986.e7-986.e15. PubMed ID: 30197047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Integrated Radiomics Model Incorporating Diffusion-Weighted Imaging and
    Zhang L; Yao R; Gao J; Tan D; Yang X; Wen M; Wang J; Xie X; Liao R; Tang Y; Chen S; Li Y
    Front Oncol; 2021; 11():732704. PubMed ID: 34527594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different diagnostic values of imaging parameters to predict pseudoprogression in glioblastoma subgroups stratified by MGMT promoter methylation.
    Yoon RG; Kim HS; Paik W; Shim WH; Kim SJ; Kim JH
    Eur Radiol; 2017 Jan; 27(1):255-266. PubMed ID: 27048531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma.
    Patel M; Zhan J; Natarajan K; Flintham R; Davies N; Sanghera P; Grist J; Duddalwar V; Peet A; Sawlani V
    Clin Radiol; 2021 Aug; 76(8):628.e17-628.e27. PubMed ID: 33941364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging.
    Suh CH; Kim HS; Choi YJ; Kim N; Kim SJ
    AJNR Am J Neuroradiol; 2013 Dec; 34(12):2278-86. PubMed ID: 23828115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication.
    Wei J; Yang G; Hao X; Gu D; Tan Y; Wang X; Dong D; Zhang S; Wang L; Zhang H; Tian J
    Eur Radiol; 2019 Feb; 29(2):877-888. PubMed ID: 30039219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.