These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30107639)

  • 61. Methodology for the analysis of transcription and translation in transcription-coupled-to-translation systems in vitro.
    Castro-Roa D; Zenkin N
    Methods; 2015 Sep; 86():51-9. PubMed ID: 26080048
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Suppression of a cold-sensitive mutation in ribosomal protein S5 reveals a role for RimJ in ribosome biogenesis.
    Roy-Chaudhuri B; Kirthi N; Kelley T; Culver GM
    Mol Microbiol; 2008 Jun; 68(6):1547-59. PubMed ID: 18466225
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dynamics of GreB-RNA polymerase interaction allow a proofreading accessory protein to patrol for transcription complexes needing rescue.
    Tetone LE; Friedman LJ; Osborne ML; Ravi H; Kyzer S; Stumper SK; Mooney RA; Landick R; Gelles J
    Proc Natl Acad Sci U S A; 2017 Feb; 114(7):E1081-E1090. PubMed ID: 28137878
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The 100S ribosome: ribosomal hibernation induced by stress.
    Yoshida H; Wada A
    Wiley Interdiscip Rev RNA; 2014; 5(5):723-32. PubMed ID: 24944100
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Better Together: Co-operation and Antagonism between RNA Polymerases during Transcription In Vivo.
    Kim S
    Bioessays; 2020 Jan; 42(1):e1900215. PubMed ID: 31814144
    [No Abstract]   [Full Text] [Related]  

  • 66. Reconstruction of translation. Evidence for the involvement of the rescue protein in the association/dissociation of ribosomal subunits.
    Ganoza MC; Aoki H; Kozieradzki I; Schwartz I
    Eur J Biochem; 1993 Nov; 217(3):839-47. PubMed ID: 8223640
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A counting-strategy together with a spatial structured model describes RNA polymerase and ribosome availability in Escherichia coli.
    Kremling A
    Metab Eng; 2021 Sep; 67():145-152. PubMed ID: 34174424
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Formation of New Polysomes on Free mRNAs in a Cell-Free Translation Systems Is Accompanied by Partial Disassembly of Previously Formed Polysomes.
    Sogorin EA; Agalarov SCh; Spirin AS
    Biochemistry (Mosc); 2015 Oct; 80(10):1327-30. PubMed ID: 26567577
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Regulation of the synthesis of ribosomes and ribosomal components.
    Nomura M; Gourse R; Baughman G
    Annu Rev Biochem; 1984; 53():75-117. PubMed ID: 6206783
    [No Abstract]   [Full Text] [Related]  

  • 70. Versatility of the carboxy-terminal domain of the alpha subunit of RNA polymerase in transcriptional activation: use of the DNA contact site as a protein contact site for MarA.
    Dangi B; Gronenborn AM; Rosner JL; Martin RG
    Mol Microbiol; 2004 Oct; 54(1):45-59. PubMed ID: 15458404
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival.
    Ishihama A
    Genes Cells; 1999 Mar; 4(3):135-43. PubMed ID: 10320479
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A competition mechanism regulates the translation of the Escherichia coli operon encoding ribosomal proteins L35 and L20.
    Haentjens-Sitri J; Allemand F; Springer M; Chiaruttini C
    J Mol Biol; 2008 Jan; 375(3):612-25. PubMed ID: 18037435
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Fluorescence Resonance Energy Transfer Characterization of DNA Wrapping in Closed and Open Escherichia coli RNA Polymerase-λP(R) Promoter Complexes.
    Sreenivasan R; Heitkamp S; Chhabra M; Saecker R; Lingeman E; Poulos M; McCaslin D; Capp MW; Artsimovitch I; Record MT
    Biochemistry; 2016 Apr; 55(14):2174-86. PubMed ID: 26998673
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Competition between ribosome and SecA binding promotes Escherichia coli secA translational regulation.
    Salavati R; Oliver D
    RNA; 1995 Sep; 1(7):745-53. PubMed ID: 7585259
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells.
    Mondal J; Bratton BP; Li Y; Yethiraj A; Weisshaar JC
    Biophys J; 2011 Jun; 100(11):2605-13. PubMed ID: 21641305
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The ASC-1 Complex Disassembles Collided Ribosomes.
    Juszkiewicz S; Speldewinde SH; Wan L; Svejstrup JQ; Hegde RS
    Mol Cell; 2020 Aug; 79(4):603-614.e8. PubMed ID: 32579943
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Novel role for a bacterial nucleoid protein in translation of mRNAs with suboptimal ribosome-binding sites.
    Park HS; Ostberg Y; Johansson J; Wagner EG; Uhlin BE
    Genes Dev; 2010 Jul; 24(13):1345-50. PubMed ID: 20595230
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Transcription and translation contribute to gene locus relocation to the nucleoid periphery in E. coli.
    Yang S; Kim S; Kim DK; Jeon An H; Bae Son J; Hedén Gynnå A; Ki Lee N
    Nat Commun; 2019 Nov; 10(1):5131. PubMed ID: 31719538
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Inhibition of ribosomal subunit synthesis in Escherichia coli by the vanadyl ribonucleoside complex.
    Frazier AD; Champney WS
    Curr Microbiol; 2013 Aug; 67(2):226-33. PubMed ID: 23512123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.