BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 30107915)

  • 1. The C-terminus of ubiquitin plays a critical role in deamidase Lpg2148 recognition.
    Zhu M; Ma X; Gao Y; Li X; Ke J; Khan MH; Teng M; Ge H; Zhu Z; Niu L
    Biochem Biophys Res Commun; 2018 Sep; 503(4):2943-2948. PubMed ID: 30107915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of Ubiquitin Deamidases in the Pathogenic Arsenal of Legionella pneumophila.
    Valleau D; Quaile AT; Cui H; Xu X; Evdokimova E; Chang C; Cuff ME; Urbanus ML; Houliston S; Arrowsmith CH; Ensminger AW; Savchenko A
    Cell Rep; 2018 Apr; 23(2):568-583. PubMed ID: 29642013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family.
    Cui J; Yao Q; Li S; Ding X; Lu Q; Mao H; Liu L; Zheng N; Chen S; Shao F
    Science; 2010 Sep; 329(5996):1215-8. PubMed ID: 20688984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Legionella pneumophila regulates the activity of UBE2N by deamidase-mediated deubiquitination.
    Gan N; Guan H; Huang Y; Yu T; Fu J; Nakayasu ES; Puvar K; Das C; Wang D; Ouyang S; Luo ZQ
    EMBO J; 2020 Feb; 39(4):e102806. PubMed ID: 31825121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrigendum to 'The C-terminus of ubiquitin plays a critical role in deamidase Lpg2148 recognition.' [Biochem. Biophys. Res. Commun. 503(4), 18 September 2018, 2943-2948].
    Zhu M; Ma X; Gao Y; Li X; Ke J; Khan MH; Teng M; Ge H; Zhu Z; Niu L
    Biochem Biophys Res Commun; 2018 Oct; 505(2):633. PubMed ID: 30243727
    [No Abstract]   [Full Text] [Related]  

  • 6. Legionella pneumophila balances ubiquitin transglutamination.
    Yan F; Zhu Y; Zhou Y
    EMBO J; 2020 Feb; 39(4):e104258. PubMed ID: 31994202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis.
    Yao Q; Cui J; Wang J; Li T; Wan X; Luo T; Gong YN; Xu Y; Huang N; Shao F
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20395-400. PubMed ID: 23175788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular basis of ubiquitin-like protein NEDD8 deamidation by the bacterial effector protein Cif.
    Crow A; Hughes RK; Taieb F; Oswald E; Banfield MJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):E1830-8. PubMed ID: 22691497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular determinants for distinguishing between ubiquitin and NEDD8 by USP2.
    Shin YC; Chen JH; Chang SC
    Sci Rep; 2017 May; 7(1):2304. PubMed ID: 28536428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of cullin RING ligases by cycle inhibiting factor: evidence for interference with Nedd8-induced conformational control.
    Boh BK; Ng MY; Leck YC; Shaw B; Long J; Sun GW; Gan YH; Searle MS; Layfield R; Hagen T
    J Mol Biol; 2011 Oct; 413(2):430-7. PubMed ID: 21903097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-assisted activation and selectivity of the bacterial RavD effector deubiquitinylase.
    Schulze-Niemand E; Naumann M; Stein M
    Proteins; 2022 Apr; 90(4):947-958. PubMed ID: 34825414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Nedd8 Non-covalent Binding Region in the Smurf HECT Domain is Critical to its Ubiquitn Ligase Function.
    He S; Cao Y; Xie P; Dong G; Zhang L
    Sci Rep; 2017 Feb; 7():41364. PubMed ID: 28169289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CUBAN, a Case Study of Selective Binding: Structural Details of the Discrimination between Ubiquitin and NEDD8.
    Santonico E; Nepravishta R; Mandaliti W; Castagnoli L; Cesareni G; Paci M
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30857167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Basis of Ubiquitination Catalyzed by the Bacterial Transglutaminase MavC.
    Guan H; Fu J; Yu T; Wang ZX; Gan N; Huang Y; Perčulija V; Li Y; Luo ZQ; Ouyang S
    Adv Sci (Weinh); 2020 Jun; 7(12):2000871. PubMed ID: 32596129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hijacking of the Host Ubiquitin Network by
    Qiu J; Luo ZQ
    Front Cell Infect Microbiol; 2017; 7():487. PubMed ID: 29376029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host FIH-Mediated Asparaginyl Hydroxylation of Translocated
    Price C; Merchant M; Jones S; Best A; Von Dwingelo J; Lawrenz MB; Alam N; Schueler-Furman O; Kwaik YA
    Front Cell Infect Microbiol; 2017; 7():54. PubMed ID: 28321389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitination independent of E1 and E2 enzymes by bacterial effectors.
    Qiu J; Sheedlo MJ; Yu K; Tan Y; Nakayasu ES; Das C; Liu X; Luo ZQ
    Nature; 2016 May; 533(7601):120-4. PubMed ID: 27049943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination.
    Kalayil S; Bhogaraju S; Bonn F; Shin D; Liu Y; Gan N; Basquin J; Grumati P; Luo ZQ; Dikic I
    Nature; 2018 May; 557(7707):734-738. PubMed ID: 29795347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hijacking the host proteasome for the temporal degradation of bacterial effectors.
    Kubori T; Hubber AM; Nagai H
    Methods Mol Biol; 2014; 1197():141-52. PubMed ID: 25172279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of substrate recognition by a bacterial deubiquitinase important for dynamics of phagosome ubiquitination.
    Sheedlo MJ; Qiu J; Tan Y; Paul LN; Luo ZQ; Das C
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15090-5. PubMed ID: 26598703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.